ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Why some scientists are trying to redefine the second

Optical clocks use such high vibration oscillators that they may be used to detect gravitational waves.

Tibi PuiubyTibi Puiu
March 27, 2021
in News, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit
Credit: Pixabay.

By employing a novel method that linked clocks with ultrafast lasers, physicists at the University of Colorado have demonstrated the most accurate optical atomic clock. These incredibly accurate clocks, which agree within 1 part in 10¹⁸ even though they’re kilometers apart, are even more accurate than conventional atomic clocks, the standard we currently use to define the second. Aside from setting a new standard for the second, optical atomic clocks may also be used in fundamental research, such as for detecting gravitational waves.

Since the ancient Egyptians and Babylonians, people have sought to measure the time of day as accurately as possible. At first, our time-keeping instruments were rudimentary, consisting of sundials and charts that track the movement of celestial bodies to identify changing seasons.

Huge leaps in measuring time were made in the 16th and 17th century by Galileo Galilei and Christiaan Huygen the use of a pendulum that ticked at a fixed frequency. This “oscillating” clock laid the foundation for basically all subsequent timing devices.

Although they operate according to the same principle — an oscillator with a resonance — the main difference between an old pendulum clock and a super modern atomic clock is the frequency of vibration. The smaller, higher frequency an oscillator is, the more stable and pure its resonances will be, thereby making these clocks more reliable.

An atomic clock measures time by counting the flipping frequency of the spin in the electrons of cesium atoms. The atomic resonance is so sharp that it can tell if a quartz crystal clock (i.e. typical clock found in everyday devices) wanders off from the right time by less than one part in 10¹⁵, or a millionth of a billionth.

This explains why the second is officially defined as 9,192,631,770 caesium electron spin flips.

Why on Earth would we want to keep time this precisely? As a matter of fact, the importance of highly precise time-keeping cannot be underestimated. Global Positioning System (GPS) satellite navigation systems rely on time-stamped signals to provide us with a precise location of a GPS receiver. If there were no atomic clocks, there would be no effective GPS. Highly precise timekeeping is also paramount in the financial industry, among other things, for time-stamping transactions in the banking sector or the stock market.

RelatedPosts

Major study shows yet another reason why it’s important to wear face masks
Europe will get 10,000 EV charging points and an ‘electric highway’ to connect Italy to Norway by 2020
Germany just invested more than ever in Research and Development, partially due to driverless cars
NASA’s Juno to make closest flyby to Jupiter’s largest moon

Every decade, the accuracy of atomic clocks has improved by an order of magnitude since their invention. Now, the next leap forward may come from optical clocks.

Schematic of the experimental setup. Credit: Hanacek/NIST.

Theoretically, an optical clock can offer extremely high-frequency precision and stability, far exceeding the performance of the best cesium atomic clocks currently in use. The problem is that optical clocks haven’t been synced over large distances. If these clocks are ever to be useful and trusted, they need to read at the same time even when they’re thousands of kilometers apart.

A breakthrough was reported at the University of Colorado, where physicists employed a new way of linking clocks with ultra-fast lasters. They used multiple clocks based on different types of atoms  — ytterbium, aluminum, and strontium. The strontium clock was placed in the University of Colorado, while the other two were housed at the US National Institute of Standards and Technology.

The clocks were connected directly through the air by a laser beam that traveled over 1.5 kilometers between the two buildings. This link was just as reliable as that provided by 3.6-kilometer optical fiber under the road. The clocks agreed with each other within 1 part in 10¹⁸ — that’s precise enough to measure distortions in space-time, which would make them ideal for detecting gravitational waves. They could also be sensitive enough to detect very subtle vibrations in the Earth’s crust, which could be used to predict volcanic eruptions with more time in advance than we can today.

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Environment

China Has Built the First Underwater AI Data Center Cooled by the Ocean Itself

byTudor Tarita
33 minutes ago
Chemistry

World’s Oldest Water is 1.6 billion Years Old — and This Scientist Tasted It

byTibi Puiu
1 hour ago
Neurology

New Dads’ Brains Light Up in Surprising Ways When They See Their Babies

byTibi Puiu
20 hours ago
Archaeology

Divers Pulled a Sphinx and Roman Coins From a 2,000-Year-Old Sunken City in Egypt

byTibi Puiu
20 hours ago

Recent news

China Has Built the First Underwater AI Data Center Cooled by the Ocean Itself

August 26, 2025

World’s Oldest Water is 1.6 billion Years Old — and This Scientist Tasted It

August 26, 2025

New Dads’ Brains Light Up in Surprising Ways When They See Their Babies

August 26, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.