ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

The sound of music: violins could soon be designed by Artificial Intelligence

Designing violins is an art -- but it could soon become a science.

Alexandra GereabyAlexandra Gerea
June 13, 2021 - Updated on June 21, 2021
in Art, News, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit

Ever since the first violins were made some 500 years ago, the process of violin-making has changed surprisingly little. Traditionally, violins are “bench-made” — by a single individual, often a master maker (or “luthier”). More recently, “shop-made” instruments, where many people participate under the supervision of a master maker, have become more common. But in both instances, the layout is designed by a master violin maker — either from scratch, or copied from the old masters.

That may soon change. According to a new study, Artificial Intelligence (AI) could soon take part in the process.

Image credits: Providence Doucet.T

A violin is a surprisingly complex object. Its geometry is defined by its outline and the arching on the horizontal and vertical section. In a new study, the Chilean physicist and luthier Sebastian Gonzalez (a postdoc) and the professional mandolin player Davide Salvi (a Phd student) showed how a simple and effective neural network can predict the vibrational behavior of violin designs — in order words, how the violin would sound.

The prediction uses a small set of geometric and mechanical parameters from the violin. The researchers developed a model that describes the violin’s outline based on the arcs of nine circles. Using this approach, they were able to draw a violin plate as a function of only 35 parameters.

A drawing from the workshop of Enrico Ceruti showing the outline as a series of connected arcs of circles, image courtesy of the Violin Museum of Cremona, Italy. Image credits: Gonzalez et al.

After starting from a basic design, they randomly changed the parameters they were using (such as the position and the radii of the circles, the thickness, the type of wood, etc) — until they obtained a database of virtual violins. Some of the designs are very similar to shapes already used in violin making, while others have never been attempted before. These shapes were then used to predict what the violin would sound.

“Using standard statistical learning tools, we show that the modal frequencies of violin tops can, in fact, be predicted from geometric parameters, and that artificial intelligence can be successfully applied to traditional violin making. We also study how modal frequencies vary with the thicknesses of the plate (a process often referred to as plate tuning) and discuss the complexity of this dependency. Finally, we propose a predictive tool for plate tuning, which takes into account material and geometric parameters,” the researchers write in the study.

Left: example of an historical violin. Credit: 2008 Stoel, Borman. Right: examples of three violins in the dataset. Credit: Politecnico di Milano

The algorithm was able to predict how the violins would sound with 98% accuracy — far better than even the researchers expected.

The innovative work promises to save a lot of work for violin makers, and it also paves the way for new, innovative types of designs to be tried. For the future research, the team will also look at how to select wood that is most desirable for the violin design.

RelatedPosts

America’s “Organic Dynasty”
Scientists just found half of the universe’s missing matter, and strengthened the Standard Model in the process
Exoplanet researcher awarded for groundbreaking work
Cycling while playing virtual reality games: will this convince people to exercise?

The study was published in Scientific Reports.

ShareTweetShare
Alexandra Gerea

Alexandra Gerea

Alexandra is a naturalist who is firmly in love with our planet and the environment. When she's not writing about climate or animal rights, you can usually find her doing field research or reading the latest nutritional studies.

Related Posts

Art

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

byTibi Puiu
5 hours ago
News

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

byTibi Puiu
8 hours ago
Biology

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

byTibi Puiu
8 hours ago
Health

In the UK, robotic surgery will become the default for small surgeries

byMihai Andrei
8 hours ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.