Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → News

New insight into what makes tattoos last forever could improve laser removal techniques

Tattoo removal might get more effective and less painful, as a result.

Tibi Puiu by Tibi Puiu
February 15, 2019
in Health, News

Once you get inked, you’re in it for life. Behind the scenes, however, to have a tattoo last forever, the cells that carry the pigment die and pass on their ink, in a continuous cycle. New findings could lead to better tattoo removal techniques that leave the skin more natural looking.

tattoo
Credit: Pixabay.

Until not too long ago, scientists used to think that tattoos lingered on the skin by staining fibroblast cells, which are the most common cells of connective tissue in the dermal layers of animals. However, we now know that it’s not only skin cells that get inked but also macrophages — specialized immune cells that are called to the wound site and then engulf the tattoo pigment like they would normally do with any invading foreign organism or dying cell. Most of the fibroblasts, and macrophages alike, become suspended in the dermis where they’re locked permanently. The dye in both cells shows through the dermis which is how you can see your tattoo.

Sandrine Henri and Bernard Malissen, both researchers at the Centre d’Immunologie de Marseille-Luminy, have found that the full picture is even more complex. It was always assumed that the macrophages carrying pigments live forever, which is what allows the tattoo to be permanent. What the French researchers found, however, was that the macrophages do die eventually, only to pass on their pigment to other cells that keep carrying the torch.

“We  were quite surprised to see that only very limited infos were available on the skin cells that are responsible for tattoo persistence and that  account for their strenuous removal. Therefore the knowledge we recently gained on the immunobiology of skin macrophages, their dynamics and the possibility to ablate them ‘à la carte’ explain why we are getting a greater understanding of their permanence,” Malissen said.

In one experiment, the researchers genetically engineered a mouse in which they were able to kill the macrophages circulating in the dermis and other tissues. Over weeks, new macrophages derived from monocytes (precursor cells) moved into the area. Only the dermal macrophages could gobble up the pigment, the researcher found in a trial when they tattooed the tail of the mouse.

Because tattoo pigment can be recaptured by new macrophages, a tattoo appears the same before (left) and after (right) dermal macrophages are killed. Credit: Baranska et al., 2018.
Because tattoo pigment can be recaptured by new macrophages, a tattoo appears the same before (left) and after (right) dermal macrophages are killed. Credit: Baranska et al., 2018.

The tattoo’s appearance did not change when the macrophages were destroyed en masse. Upon closer investigation, the scientists found that the dead macrophages release their pigment into the surroundings, which is eventually absorbed by the monocyte-derived macrophages before the pigment has a chance to disperse.

This pigment capture, release, and recapture cycle occurs over and over again in tattooed skin, whether or not macrophages are killed off in one single burst. When researchers transferred a piece of tattooed skin from one mouse to another, the pigment-carrying macrophages were sourced from the recipient, rather than the donor animal, over several weeks.

Green tattoo pigment is absorbed by macrophages (left). Pigments is released when macrophages die (center). About 90 days later, the pigment is gobbled up by new macrophages (right). Credit: Baranska et al., 2018.
Green tattoo pigment is absorbed by macrophages (left). Pigments is released when macrophages die (center). About 90 days later, the pigment is gobbled up by new macrophages (right). Credit: Baranska et al., 2018.

The findings could one day lead to tattoo removal procedures that are more efficient and less painful. When a tattoo is no longer desired, people typically turn to laser removal. Laser pulses fragment the tattoo pigments, flushing them into the body’s lymphatic system. The procedure isn’t perfect, though, as several cycles of treatment are required and some parts of tattoos remain immune to the procedure. We now know this happens because a fraction of the fragmented pigments remain on site and get recaptured by neighboring macrophages.

“Tattoo removal can be likely improved by combining laser surgery with the transient ablation of the macrophages present in the tattoo area,” Malissen told ZME Science. “As a result, the fragmented pigment particles generated using laser pulses will not be immediately recaptured, a condition increasing the probability of having them drained away via the lymphatic vessels.”

Malissen says that, unfortunately, the study’s findings won’t do anything to stop tattoo fading, which is “likely due to the fact that during the successive capture-release-capture cycles, minute amounts of released pigments are drained away from the skin.” Beyond tattoos, the study aids people with hyperpigmentation conditions in which patches of skin become darker in color than the normal surrounding skin.

Findings appeared in the Journal of Experimental Medicine.

 

Was this helpful?


Thanks for your feedback!

Related posts:
  1. The science of laser hair removal, in slow motion
  2. Tattoo removal could be as easy and painless as putting on a cream
  3. Protesters in Chile bring down police drones using simple laser pointers. Lots and lots of laser pointers
  4. Meditation and Tai Chi don’t just improve your health and mental state, they seem to improve genetic activity
  5. A tiny or moderate amount of stress could actually help improve mental health and improve resilience
Tags: Macrophagetattoo

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW