ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Laser stopwatch measures atomic events with trillionth of a billionth of a second accuracy

This is one fast 'camera'.

Tibi PuiubyTibi Puiu
November 10, 2016 - Updated on November 12, 2016
in News, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

No Content Available

When photons hit a material’s atoms, the interaction causes changes in state that happen extremely fast. Now, researchers have measured the duration of such a phenomenon with unbelievable accuracy, in the zeptosecond range (10-21 s).

Atomic precision
Researchers in Germany were able to calculate the probable position of the remaining electron of a helium atom which was hit by photons. The brightest area around the atomic nucleus shows the most likely position of the electron. Credit: Schultze/Ossiander

At such tiny scales, weird things start to happen because we’re now in the domain of quantum mechanics. Based on current theoretical frameworks, physicists calculated that when light particles called photons hit a helium atom, the photon is either entirely absorbed by one of the atom’s two electrons or distributed among them. Regardless of the mode of transfer, one electron is always ejected from the helium atom – a process called photoemission, or the photoelectric effect as Albert Einstein called it at the beggining of the last century. This basic principle is what allows solar cells to generate electricity, for instance.

Physicists at LMU Munich and the Max Planck Institute of Quantum Optics wanted to observe in great sub-atomic detail what happens during this interaction. If you were to optically image photoemission, you’d need the fastest shutter speed camera in the world. That’s because the duration of the process, defined as the time between the first instant a photon interacts with electrons and the moment one electron is ejected, takes 5 to 15 attoseconds (10-18 seconds)

The German researchers fired light on helium atoms, then used an improved measurement method to capture events that occur on timescales down to 850 zeptoseconds. First, an attosecond-long, extremely ultraviolet (XUV) light pulse hit the helium atom to excite the electrons. Meanwhile, a second laser pulse fired infrared light at the same target which lasted far less, for about four femtoseconds (10-15 seconds).

As expected, an electron was ejected from the helium atom in response to the XUV light and subsequently detected by the infrared laser. The electromagnetic field of the XUV pulse oscillates and, depending on its state, can accelerate or decelerate the ejected electron. Simply by measuring this change in speed, we can establish the duration of the photoemission event – all with zeptosecond precision.

The findings published in Nature revealed for the first time how the energy of the incident photon is quantum mechanically distributed among the two helium electrons in the final few attoseconds before one of the particles is ejected.

“Our understanding of these processes within the helium atom provides us with a tremendously reliable basis for future experiments,” explains Martin Schultze, a specialist in laser physics at LMU’s Chair of Experimental Physics, who led the experiments at the MPQ. He and his team were able to correlate the zeptosecond precision of their experiments with theoretical predictions made by their colleagues in the Institute of Theoretical Physics at the Technical University of Vienna. With its two electrons, helium is the most complex system whose properties can be calculated completely from quantum theory. This makes it possible to reconcile theory and experiment. “We can now derive the complete wave mechanical description of the entangled system of electron and ionized helium parent atom from our measurements,” says Schultze.

Tags: photoelectric effect

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

No Content Available

Recent news

Japan’s Stem Cell Scientists Claim Breakthrough in Parkinson’s Treatment

May 13, 2025

Scorpion Stings Are Surging in Brazil with Sting Rates Rising 155%

May 13, 2025

Researchers Used 3D Tech to Rebuild the Parthenon’s Lighting and Discovered It Was Nothing Like We Imagined

May 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.