Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → News

Scientists use mobile optical atomic clocks in the field for the first time (and this is a big deal)

These are the most precise clocks in the world, ticking every quadrillionth of a second.

Tibi Puiu by Tibi Puiu
February 13, 2018
in News, Physics

What PTB's transportable optical atomic clock looks like inside the trailer. Credit: Physikalisch-Technische Bundesanstalt (PTB).
What PTB’s transportable optical atomic clock looks like inside the trailer. Credit: Physikalisch-Technische Bundesanstalt (PTB).

One of the most delicate clocks in the world was recently taken for a spin by European scientists. For the first time, a transportable optical atomic clock has been used to make measurements in the field. Experts hope that this proof of concept will pave the way for a wide adoption of mobile atomic clocks around the world, vastly reducing costly errors in engineering and construction projects, but also helping research in climate or geophysics.

Atom o’clock

Optical atomic clocks represent the state-of-the-art in the frontier of modern measurement science (metrology). All clocks tell the time using a stable oscillator, whether we’re talking about a grandfather clock, which is based on a pendulum, or a sundial clock, which relies on the planet’s rotation. In an optical atomic clock, the oscillator is a laser which is regulated by the quantum oscillations of atoms. These are the most precise clocks in existence today, employing lasers with frequencies in the 100s of terahertz range. This means that these clocks ‘tick’ about a quadrillion (one million billion) times per second.

Extremely precise atomic clocks are of great interest to scientists who investigate dark matter and dark energy. Atomic clocks are also indispensable in some highly sensitive tools like gravitational wave telescopes. When gravitational waves pass through a region of space, they change the frequency of light waves traveling through the same region, but very so slightly. An optical clock can detect this slight change in light frequency and measure the effect of the gravitational wave. 

Researchers from the National Physical Laboratory (NPL), the Physikalisch-Technische Bundesanstalt (PTB) and the Istituto Nazionale di Ricerca Metrologica (INRIM) used their transportable optical atomic clock to measure the gravity potential difference between the exact location of the clock positioned in the middle of the Fréjus road tunnel between France and Italy and a second clock at INRIM, which is 90 km away in Torino, Italy. The height difference between the two clocks is about 1,000 meters.

To accurately compare the readings of the two clocks, the researchers set up a 150 km-long optical fiber link and employed a frequency comb to connect the clocks to the link. To verify the optical atomic clock measurements, the researchers also determined the gravity potential difference using more conventional methods like geodetic techniques. The two types of measurements were found to be consistent.

“Optical clocks are deemed to be the next generation of atomic clocks—operating not only in laboratories but also as mobile precision instruments,” said Christian Lisdat, group leader at PTB.

Of course, this isn’t exactly a wristwatch. The on-the-road optical atomic clock is pretty large, occupying much of the volume of a vibration-damped and temperature-stabilized trailer.

Researchers alongside the trailer that transported the atomic clock. Credit: PTB.
Researchers alongside the trailer that transported the atomic clock. Credit: PTB.

This sort of mobile optical atomic clock has the potential to resolve height differences as small as 1 cm across the planet’s surface. One of the biggest advantages of optical clocks is that they can take measurements at specific locations whereas satellite-based measurements average the gravity potential over lengths of about 100 km. As such, mobile optical atomic clocks positioned through all sorts of locations can lead to much higher-resolution measurements of the planet’s gravity potential.

A high-res map of Earth’s gravity potential would allow scientists to monitor sea levels and the dynamics of ocean currents with unparalleled accuracy — and all in real time. Researchers could also track seasonal trends in ice sheet masses and overall ocean mass changes, vastly improving the reliability of climate models and weather forecasts.

Optical atomic clocks could also save the industry billions by solving inconsistencies between national height systems. For instance, engineers who worked on the Hochrhein Bridge between Germany and Switzerland used different sea level calculations for each side, which lead to a 54cm level gap between the two sides.

“Our proof-of-principle experiment demonstrates that optical clocks could provide a way to eliminate discrepancies and harmonise measurements made across national borders. One day, such technology could help to monitor sea level changes resulting from climate change,” said Helen Margolis, fellow in optical frequency standards and metrology at NPL.

Scientific reference: Jacopo Grotti et al, Geodesy and metrology with a transportable optical clock, Nature Physics (2018). DOI: 10.1038/s41567-017-0042-3.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. New atomic clocks could measure distortions in space-time itself
  2. Nuclear clocks set to become most accurate timekeepers on Earth. Only a fraction of a second lost for 14 billion years
  3. This computer clocks uses water droplets, manipulating information and matter at the same time
  4. Students get poorer grades at classes that don’t match their biological clocks
  5. No more switching clocks. US Senate passes bill to make daylight-saving time permanent
Tags: atomic clockoptical atomic clock

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW