ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Citizen scientist finds pristine meteorite just hours after hitting Earth

The space rock could reveal how the solar system formed.

Eleanor K. SansombyEleanor K. Sansom
November 18, 2022
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit
This is the largest whole piece recovered of the Winchcombe meteorite (103 grams), found by citizen scientist Mira Ihasz on an organised search by the UK planetary science community.
This is the largest whole piece recovered of the Winchcombe meteorite (103 grams), found by citizen scientist Mira Ihasz on an organised search by the UK planetary science community. Mira Ihasz / Luke Daly / Glasgow University

At about 10 o’clock on the night of February 28 2021, a fireball streaked through the sky over England. The blazing extraterrestrial visitor was seen by more than 1,000 people, and its descent was filmed by 16 dedicated meteor-tracking cameras from the UK Fireball Alliance and many dashboard and doorbell cams.

With the time difference to Australia, the Global Fireball Observatory team at Curtin University were the first to dig into their cameras’ data, quickly realising there may be very special meteorites to find around the town of Winchcombe, Gloucestershire.

The next morning’s news told people in the area to look out for black rocks in their garden. The Wilcock family discovered a pile of dark powder and small rocky pieces on their driveway. They called in specialists from the Natural History Museum who confirmed it was a meteorite and collected the space rubble for further analysis, all within 12 hours of it landing.

More fragments were collected from the surrounding area over the next month. All told, the samples added up to around 600 grams of exceptionally pristine asteroid rock from the outer Solar System.

We have been studying this precious find with colleagues from around the world for the past 18 months. As we report in a new paper in Science Advances, it is a very fresh sample of an ancient rock formed in the early years of the Solar System, rich in the water and organic molecules that may have been crucial in the origin of life on Earth.

How to catch a fireball

Google Earth satellite image with trajectory of the fireball.
Observations from fireball cameras helped scientists calculated the likely landing area of the meteorite. Credit: Richard Greenwood / Open University / Google Earth.

Meteorites are rocks from space that have survived the fiery descent through our atmosphere. They are the remnants of our (very) distant past – around the time the planets were formed, holding clues to what our Solar System was like billions of years ago.

There are more than 70,000 meteorites in collections around the world. But the Winchcombe meteorite is quite a special one.

RelatedPosts

In a secret location in Michigan lies one of the longest running experiments
The virus that has viruses
50 Years Ago: How the Continents Fit Together
Google just let an Artificial Intelligence take care of cooling a data center

Why? Well, of all the meteorites ever found, only around 50 have ever been seen falling with enough precision to calculate their original orbit – the path they took to impact the Earth. Figuring out the orbit is the only way to understand where a meteorite came from.

The Global Fireball Observatory is a network of cameras on the lookout for falling meteorites. It is a collaboration of 17 partner institutions around the world, including Glasgow University and Imperial College in the UK. This collaboration grew out of Australia’s Desert Fireball Network, run by Curtin University. Of the few meteorite samples with known origins, more than 20% have now been recovered by the Global Fireball Observatory team.

Tracking the Winchcombe meteorite

The Winchcombe meteorite was one of the most well observed yet. All these observations helped us determine this special sample came from the main asteroid belt, between Mars and Jupiter.

Observing a fireball from a network of cameras means we can recreate the rock’s path through the atmosphere and not only calculate its orbit, but also its fall to the ground.

In an email to the UK team seven hours after the fireball, my colleague Hadrien Devillepoix pointed out the unusual amount of fragmentation, and the orbit, could mean we would be looking for a less common type of meteorite.

A space rock generally stops burning by the time it reaches about 30km altitude. The rest of the fall is affected by high-altitude winds, so predicting where the meteorite will land is not always easy.

The team at Curtin played a major role in predicting the fall area from the fireball data. We recreated the flight path of the space rock to tell people where to search for meteorite fragments.

Although many samples were found in Winchcombe town, the largest whole piece was recovered in a field during a dedicated search, found within 400 metres of the predicted position.

The building blocks of life

Winchcombe is a very rare type of meteorite called a carbonaceous chondrite. It is similar to the Murchison meteorite that fell in Victoria in 1969. They contain complex carbon-based molecules called amino acids, which are regarded as the “building blocks of life”.

These meteorites are thought to have formed in the early Solar System, billions of years ago. They formed far enough from the Sun that water hadn’t completely evaporated, and was around to be incorporated into these meteorites. They may have been responsible for bringing water to Earth later on.

Carbonaceous chondrites are known to contain water, though most samples have been contaminated by long contact with Earth’s atmosphere. Some pieces of the Winchcombe meteorite are hardly contaminated at all because they were recovered within hours of its fall. These samples are incredibly pristine, and contain almost 11% water by weight.

A home-delivered space rock

Space agencies go a long way to find space rocks this fresh. In 2020, Japan’s Hayabusa2 mission delivered a few grams of material from a carbonaceous asteroid called Ryugu back to Earth. Next year, NASA’s OSIRIS-REx will bring home a somewhat larger chunk from asteroid Bennu.

The speed with which samples of the Winchcombe meteorite were discovered, combined with the precise observations which let us determine its original orbit in the asteroid belt, make it similar to materials returned by space missions.

The triangulation of the Winchcombe fireball, orbital analysis, recovery, and the geochemical techniques used to investigate this space rock’s history required a huge amount of teamwork.

Alongside the scientific secrets it will unlock, the story of the Winchcombe meteorite is a fantastic demonstration of the power of collaboration in unravelling the mysteries of our Solar System.The Conversation

Eleanor K. Sansom, Research Associate, Curtin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

ShareTweetShare
Eleanor K. Sansom

Eleanor K. Sansom

Related Posts

Chemistry

New Hydrogel Is So Sticky It Can Hold a Rubber Duck to a Rock Through Crashing Ocean Waves

byTibi Puiu
8 hours ago
Environment

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

byMihai Andrei
2 days ago
Health

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

byMihai Andrei
2 days ago
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus
News

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

byTibi Puiu
3 days ago

Recent news

New Hydrogel Is So Sticky It Can Hold a Rubber Duck to a Rock Through Crashing Ocean Waves

August 17, 2025

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.