ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Mayo experiment helps physicists solve nuclear fusion instability

Mayo might one-day help recreate the power of the sun here on Earth.

Tibi PuiubyTibi Puiu
May 9, 2019
in News, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit
Credit: Flickr, Mike Mozart.
Credit: Flickr, Mike Mozart.

Physicists at Lehigh University have used a common household item to study the fundamental hydrodynamics inside one of the most promising types of fusion reactors. The experiments involving mayonnaise gave the scientists new insights into what may be happening when gas and molten metal mix under the influence of high acceleration and centrifugal force.

Who knew that mayo has such an important role to play in a technology that might recreate the power of the sun here on Earth?

Fusing mayo

Nuclear fusion occurs when two smaller atoms collide at very high energies to merge, creating a larger, heavier atom. This is the nuclear process that powers the sun’s core, which in turn drives life on Earth. One promising method for achieving fusion that scientists in the United States are currently exploring is called inertial confinement. At research facilities such as the Lawrence Livermore National Laboratory and Los Alamos National Laboratory, scientists confine a gas — usually hydrogen isotopes — by freezing it inside pea-sized metal pellets. The pellets are placed inside a chamber where they are hit by a high-powered laser that can generate up to a few million Kelvin (400 million degrees Fahrenheit) — conditions ripe for fusion.

The extreme heat causes the gas inside to expand, bursting the metal casing before fusion can be reached. The process is similar to a balloon being squeezed — at some point, the rubber balloon bursts under pressure from the air inside.

In order to produce fusion in inertial confinement, scientists first need to solve the problem of the molten metal and heated gas mix — and this is where mayo comes in. The material properties of the mix at high temperatures are similar to that of mayo at low-temperature, according to Arindam Banerjee, an associate professor of mechanical engineering and mechanics at Lehigh University.

Banerjee’s area of expertise is in Rayleigh-Taylor instability, a phenomenon which occurs between materials of different densities when the density and pressure gradients are in opposite directions creating an unstable stratification.

“In the presence of gravity—or any accelerating field—the two materials penetrate one another like ‘fingers,'” Banerjee said in a statement.

Investigating this kind of instability is extremely challenging because it happens almost in an instant and the large measurement uncertainties of accelerated solids.

RelatedPosts

Germany is about to plug in a machine that could revolutionize the energy industry
Closer then ever to nuclear fusion, according to physicists
When will the Sun run out of fuel?
German nuclear fusion machine starts running

For their study, Banerjee and colleagues poured Hellman’s Real Mayonnaise into a Plexiglass container and then accelerated the sample inside a rotating wheel. The progress of the material was tracked with a 500fps high-speed camera, whose images were fed into an image processing algorithm that could detect parameters associated with Rayleigh-Taylor instability. The wavelength and amplitude growth rates were finally compared to existing analytical models.

Credit: Arindam Banerjee.
Credit: Arindam Banerjee.

These experiments allowed the research team to visualize both the elastic-plastic and instability evolution of the material. The authors concluded that the onset of the instability (“instability threshold”) was related to the size of the amplitude (perturbation) and wavelength (distance between crests of a wave) applied.

“There has been an ongoing debate in the scientific community about whether instability growth is a function of the initial conditions or a more local catastrophic process,” says Banerjee. “Our experiments confirm the former conclusion: that interface growth is strongly dependent on the choice of initial conditions, such as amplitude and wavelength.”

In the future, these findings will help researchers design better conditions for inertial confinement. Step by step, little by little, the world is moving closer to achieving nuclear fusion. On that note, researchers have triggered fusion before — it’s just that the energy required to trigger the reaction was larger than the energy produced by it. Some of the most promising fusion reactors include the International Thermonuclear Experimental Reactor (ITER) in France and the Wendelstein 7-X reactor in Germany. 

The findings appeared in the journal Physical Review E. 

Tags: mayonnaisenuclear fusion

Share120TweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Scientists Have Turned to Mayonnaise to Solve One of Nuclear Fusion’s Biggest Problems

byTibi Puiu
9 months ago
Offbeat

Anime waifus are helping to build a nuclear fusion reactor

byMihai Andrei
11 months ago
Environment

Scientists achieve milestone on path towards nuclear fusion energy

byFermin Koop
3 years ago
Sun

When will the Sun run out of fuel?

byTibi Puiu
5 years ago

Recent news

This Startup Is Using Ancient DNA to Recreate Perfumes from Extinct Flowers

May 21, 2025

Jupiter Was Twice Its Size and Had a Magnetic Field 50 Times Stronger After the Solar System Formed

May 21, 2025

How One Man and a Legendary Canoe Rescued the Dying Art of Polynesian Navigation

May 21, 2025 - Updated on May 22, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.