Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → News

Mayo experiment helps physicists solve nuclear fusion instability

Mayo might one-day help recreate the power of the sun here on Earth.

Tibi Puiu by Tibi Puiu
May 9, 2019
in News, Physics

Credit: Flickr, Mike Mozart.
Credit: Flickr, Mike Mozart.

Physicists at Lehigh University have used a common household item to study the fundamental hydrodynamics inside one of the most promising types of fusion reactors. The experiments involving mayonnaise gave the scientists new insights into what may be happening when gas and molten metal mix under the influence of high acceleration and centrifugal force.

Who knew that mayo has such an important role to play in a technology that might recreate the power of the sun here on Earth?

Fusing mayo

Nuclear fusion occurs when two smaller atoms collide at very high energies to merge, creating a larger, heavier atom. This is the nuclear process that powers the sun’s core, which in turn drives life on Earth. One promising method for achieving fusion that scientists in the United States are currently exploring is called inertial confinement. At research facilities such as the Lawrence Livermore National Laboratory and Los Alamos National Laboratory, scientists confine a gas — usually hydrogen isotopes — by freezing it inside pea-sized metal pellets. The pellets are placed inside a chamber where they are hit by a high-powered laser that can generate up to a few million Kelvin (400 million degrees Fahrenheit) — conditions ripe for fusion.

The extreme heat causes the gas inside to expand, bursting the metal casing before fusion can be reached. The process is similar to a balloon being squeezed — at some point, the rubber balloon bursts under pressure from the air inside.

In order to produce fusion in inertial confinement, scientists first need to solve the problem of the molten metal and heated gas mix — and this is where mayo comes in. The material properties of the mix at high temperatures are similar to that of mayo at low-temperature, according to Arindam Banerjee, an associate professor of mechanical engineering and mechanics at Lehigh University.

Banerjee’s area of expertise is in Rayleigh-Taylor instability, a phenomenon which occurs between materials of different densities when the density and pressure gradients are in opposite directions creating an unstable stratification.

“In the presence of gravity—or any accelerating field—the two materials penetrate one another like ‘fingers,'” Banerjee said in a statement.

Investigating this kind of instability is extremely challenging because it happens almost in an instant and the large measurement uncertainties of accelerated solids.

For their study, Banerjee and colleagues poured Hellman’s Real Mayonnaise into a Plexiglass container and then accelerated the sample inside a rotating wheel. The progress of the material was tracked with a 500fps high-speed camera, whose images were fed into an image processing algorithm that could detect parameters associated with Rayleigh-Taylor instability. The wavelength and amplitude growth rates were finally compared to existing analytical models.

Credit: Arindam Banerjee.
Credit: Arindam Banerjee.

These experiments allowed the research team to visualize both the elastic-plastic and instability evolution of the material. The authors concluded that the onset of the instability (“instability threshold”) was related to the size of the amplitude (perturbation) and wavelength (distance between crests of a wave) applied.

“There has been an ongoing debate in the scientific community about whether instability growth is a function of the initial conditions or a more local catastrophic process,” says Banerjee. “Our experiments confirm the former conclusion: that interface growth is strongly dependent on the choice of initial conditions, such as amplitude and wavelength.”

In the future, these findings will help researchers design better conditions for inertial confinement. Step by step, little by little, the world is moving closer to achieving nuclear fusion. On that note, researchers have triggered fusion before — it’s just that the energy required to trigger the reaction was larger than the energy produced by it. Some of the most promising fusion reactors include the International Thermonuclear Experimental Reactor (ITER) in France and the Wendelstein 7-X reactor in Germany. 

The findings appeared in the journal Physical Review E. 

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Closer then ever to nuclear fusion, according to physicists
  2. The ‘egg conspiracy’: government-back lobby wanted to ruin a startup that makes eggless Mayo
  3. For the first time, physicists have produced more energy from fusion than they used
  4. New dark energy experiment may solve one of the universe’s greatest mysteries
  5. Scientists achieve milestone on path towards nuclear fusion energy
Tags: mayonnaisenuclear fusion

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW