ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Graphene-based sieve makes drinking water out of seawater

Desalination might one day be as easy as passing water through a sieve.

Tibi PuiubyTibi Puiu
April 3, 2017
in News, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

In many places on Earth, we’re using more water than can be replenished and with climate change looming, more and more communities are set to suffer water shortages. Drinking water shortages, that is, because if there’s anything this planet isn’t lacking in, it’s water. The problem is most of it lies in the oceans which are salty and desalinization can be extremely expensive and energy intensive. If you could filter the salts out of the ocean as easily as you’d separate common impurities with a sieve, that’d be a real breakthrough.

graphene-based salt sieve
Credit: The University of Manchester

Researchers from the University of Manchester, UK, are close to making this idea into a practical, working solution in the real world. Their solution is based on graphene-oxide membranes which had already previously proven highly effective at filtering out small nanoparticles and even large salts.

Common salts dissolved in water form a sort of ‘shell’ of water molecules around the salts. Tiny capillaries etched inside the graphene-oxide membranes can block these salts from flowing along with the water. Water molecules then pass through the sieve at a flow rate that’s anomalously fast, which is highly desirable for desalination applications.

“This is the first clear-cut experiment in this regime. We also demonstrate that there are realistic possibilities to scale up the described approach and mass produce graphene-based membranes with required sieve sizes,” said Professor Rahul Nair from the University of Manchester.

Previously at Manchester, the birthplace of graphene more than 15 years ago, the same team found graphene-oxide membranes get swollen after prolonged used and smaller salts get through the membrane along with the water. This time around, membrane swelling was avoided by controlling pore size. Pore sizes as small as 9.8 Å to 6.4 Å were demonstrated where one Å is equal to 0.1 nanometers.

“Realisation of scalable membranes with uniform pore size down to atomic scale is a significant step forward and will open new possibilities for improving the efficiency of desalination technology,” Nair said.

These membranes are not only useful for desalination. The same atomic-scale tunability of the pore sizes can be used to manufacture membranes that filter a variety of ions.

According to the U.N., 14 percent of the world’s population could encounter water scarcity by 2025. Off-grid, small-scale solutions like these graphene-oxide membranes have their place and will help lessen the strain in those areas of the world where there’s not enough capital to support large desalination plants.

Scientific reference: Tunable sieving of ions using graphene oxide membranes, Nature Nanotechnology, nature.com/articles/doi:10.1038/nnano.2017.21

RelatedPosts

Synthetic fuel production may become cheaper after using carbon nanofibers
Laser-induced graphene foam gains new super powers
Graphene Technology Could Give Us Predator Vision Contact Lenses
Scientists grow graphene on silver
Tags: desalinationgraphene

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Chemistry

Scientists make diamonds from scratch in only 15 minutes

byTibi Puiu
1 year ago
The solar powered multi-stage desalination device.
Chemistry

This new desalination device makes water cheaper than your tap

byRupendra Brahambhatt
2 years ago
The graphene tattoo patch that can treat cardiac arrhythmia.
Biology

This graphene tattoo shows promise as a treatment for cardiac arrhythmia

byRupendra Brahambhatt
2 years ago
Anatomy News

Researchers develop scaffold implant that mimics the spinal cord

byRupendra Brahambhatt
3 years ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.