ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Researchers created a genetically modified transparent squid — and this could be huge for brain research

It's the cutest octopus you'll see... if you can see it.

Mihai AndreibyMihai Andrei
August 29, 2023
in Genetics, News, Oceanography
A A
Edited and reviewed by Tibi Puiu
Share on FacebookShare on TwitterSubmit to Reddit

Historically, turning invisible was considered the stuff of wizardry and spells. More recently, physicists have also looked at invisibility, devising invisibility cloaks with some remarkable science. But when biologists take a jab at invisibility, they do it differently: they use genetic engineering.

A team of researchers at the Marine Biological Laboratory in Woods Hole, Massachusetts, have successfully engineered a squid that is transparent — and they did it for a good reason.

Cute little transparent creatures

transparent squids
This really small squid was made transparent. Albino (left) and wildtype (right) hummingbird bobtail squid (Euprymna berryi) hatchlings. Ahuja et al. created a strain of bobtail squid that deactivated two genes that produce pigment in the skin and eyes. Credit: Carrie Albertin & Kyle DeMarr.

After undergoing this genetic change, these squid become extremely difficult to see. Even the scientists who look after them in an aquarium have trouble spotting them.

“They are so strikingly see-through. It changes the way you interpret what’s going on in this animal, being able to see completely through the body,” Caroline Albertin, one of the researchers behind the project told NPR.

Albertin worked with Joshua Rosenthal on the hummingbird bobtail squid (Euprymna berryi). This is a small squid that usually measures only around 3 centimeters (1.2 in). The squid is found in the Indo-Pacific area from Indonesia to the Philippines. Researchers chose this squid for genetic editing because it’s small (and easy to manage), thrives in aquariums, and is a prodigious breeder — all traits you want in this case.

Squids commonly camouflage themselves in their environment using specialized cells called chromatophores. These chromatophores are responsible for the color of a range of animals including amphibians, fish, reptiles, and cephalopods (the group that includes squids and octopuses). Mammals and birds don’t have chromatophores — they have cells called melanocytes for coloration.

The center of each chromatophore contains a sac full of pigment. Like a chameleon (arguably even more impressively), squids use chromatophores below the surface of the skin to change their color and mix with the surrounding environment.

RelatedPosts

Chang’e-5 samples reveal Moon rocks dating back less than 2 billion years – the youngest we’ve seen
Hubble snaps breathtaking new image of Jupiter
Teens are having sex sooner (and raunchier) than ever before — but sex education isn’t keeping up
British scholar claims to have decoded the mysterious Voynich Manuscript

Albertin and Rosenthal wanted to create a squid without any pigment — an albino.

hummingbird bobtail squid next to paper clip
This adorable Hummingbird bobtail squid is next to a paperclip for scale. Image credits: Tim Briggs/MBL Cephlapod Program.

They used a method called CRISPR to edit out a gene that was known to be linked with pigment in squids, but “nothing happened, ” Albertin told NPR. So they searched and found another gene that was related. When they knocked this one out, the resulting squids finally had no more color.

Why making transparent squids actually matters

The research opens up a completely different way to study cephalopods. Studying cephalopods is exciting because they’re very smart and their nervous systems are much more advanced than those of other invertebrates.

“There’s a whole lot of incredibly interesting biology surrounding cephalopods, unlike any other invertebrate,” says Rosenthal. “We now have a model cephalopod where we can interrogate biological function at a much higher resolution than before.”

Cephalopods can use tools and solve mazes and intricate tasks; they often learn by watching others, which hints at sophisticated intelligence. Even their instantaneous camouflage requires an advanced cognitive ability. However, studying them is difficult, and researchers haven’t really had model organisms for cephalopods.

A model organism is a non-human species that is extensively studied in the laboratory to understand particular biological processes. Research on model organisms often provides insights into how similar biological mechanisms work in other species, including humans. The fruit fly, zebrafish, and mouse are good examples of model organisms. This new transparent version of the bobtail squid could be just that.

For instance, co-authors Cris Niell at University of Oregon, Eugene, and Ivan Soltesz at Stanford University examined the albino squid’s brain activity by inserting a fluorescent dye into its optic lobe. The dye lights up every time it detects calcium (which the squid’s brain releases).

Then, with this setup, the researchers projected a series of images in front of the squid, causing its brain to light up and consequently, the dye to light up. With a normal squid, this doesn’t work because the skin pigment prevents the observation.

“The ability to directly and precisely test gene function in a model cephalopod is exciting because it makes it possible to study the features that make cephalopods special – and it will be an important tool for understanding many different aspects of their unique biology,” said co-author Albertin.

Researchers are now working to breed the transparent squids and distribute them to other labs studying cephalopods.

“We want to see these animals shared with the research community,” Rosenthal said. “Cephalopods contain treasure troves of biological novelty. We want to see people using them to ask thought-provoking questions and come up with novel findings.”

Journal Reference: Namrata Ahuja, et al (2023) Creation of an albino squid line by CRISPR-Cas9 and its application for in vivo functional imaging of neural activity. Current Biology, DOI: https://doi.org/10.1016/j.cub.2023.05.066

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Chemistry

New Hydrogel Is So Sticky It Can Hold a Rubber Duck to a Rock Through Crashing Ocean Waves

byTibi Puiu
5 hours ago
Environment

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

byMihai Andrei
2 days ago
Health

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

byMihai Andrei
2 days ago
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus
News

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

byTibi Puiu
2 days ago

Recent news

New Hydrogel Is So Sticky It Can Hold a Rubber Duck to a Rock Through Crashing Ocean Waves

August 17, 2025

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.