ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Fast-acting enzyme can break down plastic in as little as 24 hours

The researchers said the new enzyme has the potential to “supercharge” recycling on a large scale.

Fermin KoopbyFermin Koop
April 28, 2022 - Updated on April 29, 2022
in Environment, Environmental Issues, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Using enzymes to break down plastic waste is a new approach gaining a lot of momentum, with a set of recent breakthroughs showing that enzymes can reduce plastic to simple molecules. Now, in a new study, researchers have found an enzyme variant that can degrade PET plastics in a matter of hours to days — and stable enough to be adopted on a large scale.

Image credit: Pxhere.

The discovery could help tackle the world’s escalating plastic waste crisis, which is polluting the oceans and filling up landfills. Half of the plastics ever produced have been made in the last 15 years, and production is expected to double by 2050. They are truly everywhere, from Everest to Antarctica to the food we eat daily. Having a way to quickly break down and recycle plastic could make a big difference.

“The possibilities are endless across industries to leverage this leading-edge recycling process,” Hal Alper, study author from the University of Texas at Austin, said in a statement. “Beyond the waste management industry, this also provides corporations from every sector the opportunity to take a lead in recycling their products.”

Tackling the plastic crisis

Alper and his team focused on PET plastic (polyethylene terephthalate), a polymer that is mainly used for consumer packagings, such as bottles and containers, and for certain fibers and textiles. In 2016, researchers came up with an enzyme (PETase) that could break down PET plastic in weeks, a time frame that was then further improved six times in 2020.

Now, the researchers at the University of Texas wanted to further improve the use of the technology – which they believed has been held back by an inability to work well at low temperatures and at different pH ranges. They came up with a machine learning model and use it to create a new and improved enzyme named FAST-PETase that’s much more robust than previous iterations.

This new enzyme was better at breaking down PET plastic at a range of pH levels and at temperatures between 30 and 50 °C (86 and 122 Fahrenheit). It could almost degrade entire 51 different PET products in a week, and in some experiments in 24 hours. The enzyme could also do a circular process of breaking down the plastic and then putting it back together.

The enzyme won’t be released into the wild anytime soon. Instead, it could be used to “supercharge” plastic recycling on a large scale, allowing industries to reduce their environmental footprint by recovering and reusing plastics. It’s portable, affordable, and can be adopted on a large scale. They have already filed for a patent for this technology and hope to soon implement it in landfills and polluted areas.

Recycling is one the most obvious ways to reduce plastic waste (the other one being to simply use less), but globally less than 10% of all plastic gets recycled. That’s when we turn to landfills or burning, which is energy-intensive and costly. Biological alternatives such as enzymes require much less energy, but until now no one had figured out how to make enzymes work at low temperatures to make them more efficient.

RelatedPosts

New research produces a viable, biodegradable alternative to plastic
Brussels announces EU-wide strategy to fight plastic pollution
The essential read on plastics — a material that changed the world
The statistic of the year: 90.5% of plastic has never been recycled

“When considering environmental cleanup applications, you need an enzyme that can work in the environment at ambient temperature. This requirement is where our tech has a huge advantage in the future,” Alper concludes.

The study was published in the journal Nature.

Tags: plastic

ShareTweetShare
Fermin Koop

Fermin Koop

Fermin Koop is a reporter from Buenos Aires, Argentina. He holds an MSc from Reading University (UK) on Environment and Development and is specialized in environment and climate change news.

Related Posts

Environment

This Caddisfly Discovered Microplastics in 1971—and We Just Noticed

byMihai Andrei
4 weeks ago
Animals

Birds are building nests out of decades-old plastic trash and it’s a record of the Anthropocene

byMihai Andrei
2 months ago
Health

This study shows why you should never eat from a plastic container

byAlexandra Gerea
3 months ago
Environment

Scientists make ‘living plastic’ with bacterial spores that could put an end to forever plastic pollution

byTibi Puiu
1 year ago

Recent news

The Worm That Outsourced Locomotion to Its (Many) Butts

May 16, 2025

The unusual world of Roman Collegia — or how to start a company in Ancient Rome

May 16, 2025
Merton College, University of Oxford. Located in Oxford, Oxfordshire, England, UK. Original public domain image from Wikimedia Commons

For over 500 years, Oxford graduates pledged to hate Henry Symeonis. So, who is he?

May 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.