ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Iron Man-inspired material made from DNA and glass is 5x stronger than steel — and 4x lighter

Regular glass is brittle and fragile. But pure glass coated on DNA is a different beast entirely.

Tibi PuiubyTibi Puiu
October 20, 2023
in Materials, News
A A
Edited and reviewed by Mihai Andrei
Share on FacebookShare on TwitterSubmit to Reddit
A silhouette of a superhero in a high-tech armor, standing against a sunset backdrop.
A silhouette of a superhero in high-tech armor, standing against a sunset backdrop. Credit: AI-generated, DALL-E 3.

Scientists have successfully combined the intricate structure of DNA with the purity of glass to create a material that boasts both lightness and unprecedented strength. The resulting supermaterial is five times lighter yet four times stronger than steel. This makes it “the strongest known” for its given density, according to the scientists who forged the material from the University of Connecticut, Columbia University, and Brookhaven National Lab.

An unexpected union of strength and lightness

The quest for materials that perfectly balance strength and lightness has always been a challenge. The two characteristics often seem at odds with each other, but that doesn’t have to be the case. In fact, as a team of dedicated researchers showed, these two traits can sometimes go hand in hand.

Most cool science projects feature some equally cool inspiration. This time it came from Iron Man’s iconic suit.

“I am a big fan of Iron Man movies, and I have always wondered how to create a better armor for Iron Man. It must be very light for him to fly faster. It must be very strong to protect him from enemies’ attacks. Our new material is five times lighter but four times stronger than steel. So, our glass nanolattices would be much better than any other structural materials to create an improved armor for Iron Man,” said Oleg Gang, a nanomaterials scientist at Columbia University.

The crux of their approach lies in exploiting the inherent strengths of glass. Yes, that same glass that shatters with the slightest mishap. The reason why glass breaks easily has to do, in most cases, with imperfections in its structure, like cracks or missing atoms. However, in its purest, most flawless form, a tiny piece of glass can endure pressures that would crumble even some of the sturdiest, heaviest materials.

However, crafting large, unblemished glass pieces is extremely challenging. This is why when using glass as a structural material, a size less than a micrometer thick is nearly always perfect. And since it’s lighter than many metals and ceramics, structures made of such pristine nano-sized glass are both powerful and feather-light.

Glass and DNA materials
The series of images at the top (A) show how the skeleton of the structure is assembled with DNA, then coated with glass. (B) shows a transmission electron microscope image of the material, and (C) shows a scanning electron microscope image of it, with the two right-hand panels zooming in to features at different scales. Credit: University of Connecticut

To shape the pure glass particles into a 3D framework, the researchers turned to DNA, which they used as a scaffold. Imagine a house frame, but instead of wood or steel, it’s constructed entirely of DNA. This self-assembling DNA framework acts as a skeleton, onto which scientists meticulously applied a glass coating. This delicate balance results in a material that’s both robust and lightweight, achieving strengths and densities previously thought impossible.

RelatedPosts

New algorithm turns low-resolution photos into detailed images — CSI style
When did people first start wearing clothes? 120,000-year-old bone tools found in Moroccan cave shed clues
Despite Trump, more and more countries continue to ratify the Paris Agreement
Record-setting heatwave scorches central US as over 100 million Americans receive warning

“The ability to create designed 3D framework nanomaterials using DNA and mineralize them opens enormous opportunities for engineering mechanical properties. But much research work is still needed before we can employ it as a technology,” says Gang.

Next, the researchers plan to make even stronger materials using DNA structure. For instance, substituting carbide ceramics for glass could produce materials with even better strength-to-weight ratios. Altering the DNA structure may also heavily improve these ratios. Does this mean that we’ll get to see some of these crazy materials embedded into Iron Man-like body armor someday? Who knows, but now we know someone’s working on it.

The findings appeared in the journal Cell Reports Physical Science.

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Art

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

byTibi Puiu
16 hours ago
News

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

byTibi Puiu
19 hours ago
Biology

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

byTibi Puiu
19 hours ago
Health

In the UK, robotic surgery will become the default for small surgeries

byMihai Andrei
19 hours ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.