ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Can We Construct Entire Buildings with Recycled Glass? MIT Engineers Are Testing the Limits

From bottles to buildings, MIT's glass bricks are a great demonstration of circular construction.

Tibi PuiubyTibi Puiu
September 20, 2024
in Future, Green Living, News
A A
Edited and reviewed by Zoe Gordon
Share on FacebookShare on TwitterSubmit to Reddit
Proposed glass building material.
Glass building material. Credit: MIT.

Could buildings one day be made from materials that are as easy to take apart as LEGO bricks? A team of engineers at MIT believes so, and they are developing a new kind of reconfigurable masonry made from 3D-printed, recycled glass.

While it may sound nuts to use glass as a building material, structural tests show the strength of the glass bricks to be comparable to their concrete counterparts. This fresh approach to building materials could transform how we build and dismantle structures. One day it could help to make the industry more sustainable and reduce its carbon footprint.

A Circular Approach to Construction

The 3-D printed glass bricks were inspired by “circular construction,” a growing movement in architecture that seeks to reuse materials across multiple building lifetimes. By reducing the need to manufacture new materials, the hope is to cut down the greenhouse gases linked to construction, known as “embodied carbon.” These emissions accumulate throughout a building’s life — from material production to eventual demolition.

Motivated by this vision, MIT engineers have created durable, multilayered glass bricks using 3D-printing technology. Each brick, shaped like a figure-eight, is designed to interlock—much like LEGO bricks. The team envisions future buildings that can be taken apart, with their bricks reassembled into new structures or recycled into entirely different shapes.

“Glass is a highly recyclable material,” says Kaitlyn Becker, an assistant professor of mechanical engineering at MIT. “At the end of a structure’s life, these glass bricks can be disassembled and reassembled into something new, or even remelted and printed into another form.”

Breaking New Ground with Glass

Glass bricks made by Evenline
Credit: MIT.

Glass may seem like an unlikely choice for a building block. Generally, it’s seen as fragile and unsuitable for major structural elements. However, this project, led by Becker and Michael Stern, an MIT graduate and founder of Evenline, a company specializing in 3D glass printing, will make you challenge this assumption.

“Glass as a structural material kind of breaks people’s brains a little bit,” says Stern. “But we’re showing this is an opportunity to push the limits of what’s been done in architecture.”

RelatedPosts

Planned tallest building in the US receives approval for ‘unlimited’ height
Turns out you can make harder-than-concrete bricks on Mars simply by compressing soil
Japan casts steel-like glass using levitation
KTH researchers develop transparent wood for use in building and solar panels
Credit: MIT.

The team recently tested their glass bricks under mechanical stress, finding that the strongest bricks could withstand pressures comparable to those borne by concrete blocks. That’s a significant milestone for glass as a building material, showing that it can offer both recyclability and strength.

Stepping Toward More Sustainable Architecture

A glass brick being 3d printed
Credit: MIT.

The inception story of this research first began at MIT’s Glass Lab, where Becker and Stern first encountered the material during their undergraduate studies. Soon, their fascination with glass’s recyclability and optical properties set them on a path to explore how it could work for construction.

Stern eventually devised a 3D glass printer. The latest iteration of the printer, G3DP3, melts recycled glass bottles and turns them into a printable form. Next, the glass is layered into sturdy bricks, each with interlocking pegs like those in LEGO blocks.

In addition to their mechanical strength, the bricks offer flexibility in design. The figure-eight shape allows them to be stacked into walls that can curve and shift, allowing for more dynamic architectural structures.

So, the researchers see vast potential for this technology. In the near future, they hope to build pavilions and temporary structures that can be reassembled into new forms. The long-term vision is to grant these glass bricks “many lives”. They can be reused in different projects, reducing the need for new materials and cutting down on waste.

While more research is needed to refine the interlocking features, which are currently made from materials other than glass, the team remains optimistic about scaling up their design.

“We have more understanding of what the material’s limits are, and how to scale,” says Stern.

For now, the team is focused on constructing progressively larger glass structures, from small walls to potentially entire buildings.

The findings were reported in the journal Glass Structures and Engineering.

Tags: buildingconstructionglass

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Archaeology

Roman Wall Built to Stop Spartacus Rebellion Discovered in Italian Forest

byTibi Puiu
3 weeks ago
Design

Planned tallest building in the US receives approval for ‘unlimited’ height

byTibi Puiu
12 months ago
Future

Scientists make transparent, fireproof glass-like material out of bamboo

byTibi Puiu
1 year ago
Environment

Green walls can reduce heat lost by buildings by over 30% in temperate climates

byAlexandru Micu
4 years ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.