ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Astronomers find why Uranus and Neptune are different colors

The two worlds would have looked the same were it not for an extra coat of haze on Uranus.

Tibi PuiubyTibi Puiu
June 1, 2022
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit
Left: Hubble’s 25 October 2021 view of Uranus puts the planet’s bright northern polar hood in the spotlight.  Right: Hubble’s 7 September 2021 view of Neptune features the planet’s dark spot and darkened northern hemisphere. Credit: NASA.

The ice giants Uranus and Neptune are, in many ways, like twins. They’re just about the same hefty size, roughly four times the size of Earth and 15 times its mass. Both have similar daily rotations of slightly less than 17 hours. And close to their superheated cores, it may even rain diamonds.

But despite these similarities, Neptune is dressed in a vibrant deep blue, whereas Uranus is pale blue with a tint of green. Observations performed by astronomers using the Hubble Space Telescope, as well as the Gemini North telescope and the NASA Infrared Telescope Facility, may finally explain why the two siblings look so different.

Using data gathered from these observations, astronomers pieced together a single atmospheric model for both worlds. This model showed that excess haze builds up in Uranus’ atmosphere, explaining why it appears to be a lighter tone than Neptune.

“This is the first model to simultaneously fit observations of reflected sunlight from ultraviolet to near-infrared wavelengths,” Patrick Irwin, Professor of Planetary Physics at Oxford University and lead author of the new study, said in a statement. “It’s also the first to explain the difference in visible color between Uranus and Neptune.”

Both are blue due to the heavy concentration of methane in their atmospheres, a greenhouse gas that absorbs the color red from the spectrum of light and scatters blue light. However, the middle layer of Uranus’ atmosphere, which is made up of haze particles, is twice as thick as that of Neptune’s. If there was no haze in the atmospheres of the two icy worlds, both would appear almost equally blue.

This haze, caused by fine suspended particles, known as aerosols, is whitish in appearance, which explains why Uranus looks paler than Neptune.

On both worlds, methane ice condenses pulling haze particles with them in a shower of methane snow. Neptune has a more turbulent atmosphere than Uranus does, making the former more efficient at producing methane snow. In time, Neptune’s haze layer thinned, resulting in its clearer blue color.

RelatedPosts

Lions’ origin revealed by genetic analysis
Amazon rainforest approaching tipping point of turning into savannah
The amazing Lyrebird can not only mimic other birds, but also chainsaws, theme songs, and car alarms — anything, basically
Moderna’s COVID-19 vaccine could provide immunity for at least one year

“We hoped that developing this model would help us understand clouds and hazes in the ice giant atmospheres,” commented Mike Wong, an astronomer at the University of California, Berkeley, and a member of the team behind this result. “Explaining the difference in color between Uranus and Neptune was an unexpected bonus!”

But why the thicker haze in the first place? Writing in the Journal of Geophysical Research: Planets, the authors note that the extra haze on Uranus could be explained by an ancient impact with a giant cosmic body, expending a significant portion of the planet’s internal energy and heat sources. The impact would have made Uranus’ atmosphere more sluggish, resulting in less methane snow.

Not everyone is convinced by this explanation, though. Speaking to the NY Times, Erich Karkoschka, a planetary scientist at the University of Arizona, suggests that a more plausible explanation is that the two worlds may simply be physically different. The two worlds aren’t exactly twins, after all, despite their many similarities.

We should learn more about how the worlds both differ and are alike once a new orbiter reaches the outer planets, which NASA hopes to launch in the 2030s. In the meantime, the newly operational mighty James Webb Telescope could reveal new secrets about the atmospheres of Uranus and Neptune. 

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Environment

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

byMihai Andrei
17 hours ago
Health

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

byMihai Andrei
18 hours ago
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus
News

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

byTibi Puiu
23 hours ago
News

Drone fishing is already a thing. It’s also already a problem

byMihai Andrei
24 hours ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.