ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Ice shelf protecting Antarctic glacier is on the verge of collapse

Pine Island connects the center of the western Antarctic ice sheet with the ocean.

Fermin KoopbyFermin Koop
June 14, 2021
in Climate, Environment, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Pine Island is Antarctica’s biggest glacier and also the fastest melting one on the continent, responsible for about 25% of its total ice loss. Now, in a new study, researchers showed that the glacier is more vulnerable to rapid melting than previously thought, as climate change is weakening its natural braking system. 

Image credit: University of Washington.

Together with its neighboring Thwaites glacier, Pine Island connects the center of the western Antarctic ice sheet with the ocean, discharging significant amounts of ice to the sea. These two glaciers have been losing ice for the past 25 years. If this speeds up, global seas could rise significantly over the next few centuries, scientists estimate. 

“We may not have the luxury of waiting for slow changes on Pine Island; things could actually go much quicker than expected,” lead author Ian Joughin, said in a statement. “The processes we’d been studying in this region were leading to an irreversible collapse, but at a fairly measured pace. Things could be much more abrupt if we lose the rest of that ice shelf.”

The Pine Island and Thwaites glaciers have been under the spotlight in recent decades as their ice shelves thinned because warmer ocean currents melted the ice’s underside. Pine Island Glacier’s motion toward the sea accelerated from 2.5 kilometers per year in the 1990s to 4 kilometers per year to 2009. The speed then stabilized for almost a decade but is now accelerating.

Pine Island’s ice shelf lost one-fifth of its area in a few dramatic breaks from 2017 to 2020, captured by the Copernicus Sentinel-1 satellites, operated by the European Space Agency. This created icebergs more than eight kilometers long and 36 kilometers wide, which then split into lots of little pieces, Joughin told Associated Press.

Alongside scientists from the University of Washington and British Antarctic Survey, Joughin combined satellite data with a computer model of ice movement to determine what is driving the speed up. Due to its extremely remote location, satellites play a fundamental role in the measurement and monitoring of Antarctic glaciology.

The researchers found that the glacier’s ice shelf has retreated by 20 kilometers between 2017 and 2020. This was caught on time-lapse video from a European satellite that takes pictures every six days. The ice shelf seems to be “ripping itself apart” because of the glacier’s acceleration in the past two decades, Joughin explained.

“The recent changes in speed are not due to melt-driven thinning; instead they’re due to the loss of the outer part of the ice shelf,” Joughin said in a statement. “The glacier’s speedup is not catastrophic at this point. But if the rest of that ice shelf breaks up and goes away then this glacier could speed up quite a lot.

For the researchers, it’s not clear yet whether the shelf will continue to crumble or no, as other factors, such as the slope of the land below the glacier’s receding edge, will also influence the outcome. But what’s certain is that the new findings change the timeline for when Pine Island’s ice shelf could disappear and the speed the glacier might move. 

RelatedPosts

Short-lived chemicals that burn a hole in the ozone layer are on the rise
Antarctica is losing six times more ice than 40 years ago
The stories of Antarctic stations: from science to babies, crime, and beer culture
Antarctica is warming three times faster than the rest of the world

The study was published in the journal Science Advances.

Tags: antarcticaglacier

ShareTweetShare
Fermin Koop

Fermin Koop

Fermin Koop is a reporter from Buenos Aires, Argentina. He holds an MSc from Reading University (UK) on Environment and Development and is specialized in environment and climate change news.

Related Posts

Environment

Southern Ocean Salinity May Be Triggering Sea Ice Loss

byBill Morris
3 weeks ago
Climate

This Is the Oldest Ice on the Planet and It’s About to Be Slowly Melted to Unlock 1.5 Million Years of Climate History

byTibi Puiu
3 weeks ago
Animals

Pungent Penguin Poop Produces Polar Cloud Particles

byKimberly M. S. Cartier
3 months ago
Geology

Antarctica has a huge, completely hidden mountain range. New data reveals its birth over 500 million years ago

byJacqueline Halpin
3 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.