Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science

Sew face masks out of cotton and chiffon or natural silk to protect against COVID-19

Material matters.

Alexandru Micu by Alexandru Micu
April 27, 2020
in Health, News, Science

A new study from the University of Chicago reports that a multi-layered mask made from cotton fabric and chiffon or natural silk can be just as effective as N95 masks against the coronavirus.

Image credits Alexandra Gerea.

There just aren’t enough masks to go around, and those that we do have should be earmarked for healthcare workers. How, then, are we to keep ourselves safe in the great (and pandemic) outdoors? Well, according to one new study, we should do like our forefathers before us — and sew!

The authors analyzed the filtration properties of fabrics against aerosols (the main method of transmission for the SARS-CoV-2 coronavirus) and reported on the types of materials to use in order to create an effective mask.

Cotton and chiffon

Although the U.S. Centers for Disease Control and Prevention recommends the use of face masks whenever going outside, the reality on the ground is that such equipment is often in short supply. Surgical masks are somewhat easier to come by, but they are much less effective than filtering masks such as the N95 model (although they’re still useful).

The real problem is that every mask we use is one that’s no longer available for the healthcare sector, and the medical personnel fighting to help the infected against the disease need such masks to be able to continue doing their jobs. So people have started making their own, which is awesome. Researchers are now pitching in, too, and are informing us of the best way, and the best materials, to use when making our masks.

Coronavirus is spread through saliva droplets that form aerosols when we breathe, talk, or cough. The heavier droplets fall to the floor, but the lighter ones remain in suspension around us and can travel (and infect) up to 4 meters away.

The team, led by Molecular Engineering Professor Supratik Guha, used an aerosol mixing chamber to produce particles ranging in diameter from 10 nm to 6 μm in diameter, roughly the same interval of the size seen in coronavirus-carrying aerosols. A fan was used to force them through various textile samples (the fan was set to generate airflow comparable to that of a person’s respiration at rest), and the team compared particle levels in the air before and after passing through the material. The study was carried out at the U.S. Department of Energy’s Center for Nanoscale Materials user facility at Argonne National Laboratory with funding from the U.S. Department of Defense’s Vannevar Bush Fellowship.

Their results show that one layer of “tightly-woven” cotton combined with two layers of polyester-spandex chiffon (a type of sheer fabric most commonly seen in evening gowns — can filter out between 80% to 99% of all aerosol particles in a sample (depending on their size). Such performance, they add, is close to that of an N95 respirator mask.

The chiffon can be swapped for natural silk or flannel without losing filtering ability, or the whole thing can be replaced with a cotton quilt with cotton-polyester batting. The combination of two materials is important, however. The team explains that the cotton creates a physical barrier to incoming aerosol particles, while materials such as chiffon and natural silk can become charged, and serve as an electrostatic barrier.

Another thing to keep in mind is that it’s essential for such masks to be perfectly fitted. Even the slightest gap between the mask’s edges and the user’s skin can reduce their filtering efficiency by 60%.

The paper “Aerosol Filtration Efficiency of Common Fabrics Used in Respiratory Cloth Masks” has been published in the journal ACS Nano.

Was this helpful?
Thanks for your feedback!
Related posts:
  1. Can face masks really protect against the coronavirus? Here’s what the experts say
  2. Hamsters confirm — face masks work against the coronavirus
  3. Scientists ‘sew’ atomic lattices seamlessly together
  4. Systematic review shows face masks really do offer important protection against respiratory viruses
  5. Should we be wearing face shields instead of face masks?
Tags: coronaviruscottonfaceMaskmaterials

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW