ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

DNA just got a major update, with readable synthetic nucleotides

Half-synthetic life isn't sci-fi any longer.

Alexandru MicubyAlexandru Micu
November 30, 2017
in Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Earlier this year, scientists were unveiling the first, stable semi-synthetic life form. In a paper published today, another research group reports enabling their spawn to read and use the synthetic genetic data, creating compounds entirely new to biological systems.

DNA.
Image credits Colin Behrens.

This year started off with a bang for everyone even remotely interested in the fields of genetics and genetic engineering when researchers from the Scripps Research Institute, California, announced the creation of a stable organism carrying semi-synthetic DNA. While it might not sound like much, the result was a breakthrough. Virtually all life on Earth shares DNA made from four different elements called nuclear bases. These are adenine (A), cytosine (C), guanine (G), and thymine (T). All the complexity of life ever to spring up on this fair planet was borne out of different re-arrangements of these four. Not only can we re-arrange the letters that tell life how to be alive, but now, we can introduce our own symbols in there.

Today, another team from the same institution published a paper that could create a paradigm shift in how we interact with life’s fundamental building blocks. They report that life understands the synthetic nucleotides embedded in DNA.

CTAG-XY

The team first snuck the two additional ‘letters’, X and Y,  into the genome of an E. coli bacterium strain back in 2014. However, the organism was highly unstable. It could maintain X and Y in its genome while going about its daily business, not so much during cell division. Which is a problem when you’re gene-shaping.

“Your genome isn’t just stable for a day,” senior researcher Floyd Romesberg explained earlier in the year. “Your genome has to be stable for the scale of your lifetime. If the semisynthetic organism is going to really be an organism, it has to be able to stably maintain that information.”

Subsequent refining of the organism, including switching to a new nucleotide transporter that would enable more stable DNA replication, a re-design of the Y base, and better delivery through the use of CRISPR-Cas9, allowed it to remain stable even through division.

Now, a paper describing further improvements brought to the organism’s stability comes to expand on that work. Romesberg and his colleagues started by embedding their unnatural bases in genes that also contained A, C, G and T. They found that within the semi-synthetic organism, these genes could be successfully transcribed into RNA molecules also containing the unnatural bases. The cells could then use these RNA molecules at their ribosomes (protein manufacturing plants) to direct the incorporation of unnatural amino acids into proteins.

Fluorescent E. coli.
The fluorescent protein in these bacteria is encoded by artificial DNA bases.
Image credits Yorke Zhang et al., 2017, Nature.

Scientists demonstrated this new transcription process in the E. coli strain, successfully transcribing its artificial X and Y nucleotides into biochemical compounds with the same efficiency it would for natural A, C, G, or T bases. This means that the bacterium could synthesize products containing non-canonical amino acids (ncAAs), compounds encoded by stretches of DNA containing Y and X. Its the first organism to both contain unnatural bases in its DNA and use the bases to instruct cells to make a new protein.

RelatedPosts

Icelandic DNA mapping might lead to the future of medicine
Scientists film bacteria becoming virtually drug-immune — and it took them only 10 days
Research identifies a gene that makes our brains (and those of primates) unique
Bacteria can make you happier AND smarter

The synthesis process also hints at a new way of replicating molecules that rely to a lesser extent on hydrogen bonds (the type of electrochemical interactions which form the ‘rungs’ in DNA).

“Remarkably, this reveals that for every step of information storage and retrieval, hydrogen bonds, so obviously central to the natural base pairs, may at least in part be replaced with complementary packing and hydrophobic forces,” the team explains in the paper. “Despite their novel mechanism of decoding, the unnatural codons can be decoded as efficiently as their fully natural counterparts.”

The result of this process is a new class of semi-synthetical proteins — compounds we’ve never before seen in natural systems. What sets them apart is their incorporation of the unnatural base pair (UBP), the team writes, while retaining high stability. The four natural DNA bases code 20 amino acids. With the addition of X and Y, an organism could code for up to 152 new amino acids. The researchers hope these amino acids could become building blocks for new medicines.

“We have examined the decoding of only two unnatural codons, but the UBP is unlikely to be limited to these,” the researchers explain. “Thus, the reported SSI is likely to be just the first of a new form of semi-synthetic life that is able to access a broad range of forms and functions not available to natural organisms.”

It’s still unknown where this breakthrough will lead — what’s sure for now is that DNA on Earth just got a major update to its complexity.

The paper “A semi-synthetic organism that stores and retrieves increased genetic information” has been published in the journal Nature.

Tags: E. ColigeneticsSemi-synthetic life

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Future

Researchers just got a group of bacteria to produce Paracetamol from plastic

byMihai Andrei
2 months ago
Genetics

Artificial selection — when humans take what they want genetically

byShiella Olimpos
3 months ago
Archaeology

Cats Came Bearing Gods: Religion and Trade Shaped the Rise of the Domestic Cat in Europe

byMihai Andrei
4 months ago
Animals

Some 31 million years ago, these iguanas rafted over 5,000 miles of ocean

byTudor Tarita
5 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.