ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Coronavirus saliva droplets can travel up to 6 meters even in very low wind

The often cited "2 meter" (6 feet) physical distancing recommendation may be insufficient in some scenarios.

Tibi PuiubyTibi Puiu
May 19, 2020
in Health, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit
Saliva droplets can travel large distances, depending on environmental conditions such as wind speed, temperature, pressure and humidity. Wind shown blowing left to right at speeds of 4 kph (top) and 15 kph (bottom) can transport saliva droplets up to 6 meters (18 feet). Credit: Drikakis et al.

There is still much we don’t know about how the coronavirus spreads, aside from the fact that it is extremely contagious. Particularly, there are many important unknowns regarding the airborne transmission of the virus.

Many governments and public health experts advise that people keep at least two meters (6 feet) of physical distancing between themselves and others while out in public. This is to avoid any contact with virus-containing aerosols generated by a potentially infected person when someone sneezes or coughs.

A new study, however, seems to suggest that the standard two-meter physical distancing recommendation may not be enough — at the very least, two meters of distancing can still be risky in certain situations and environments.

“Our understanding of the mechanisms of airborne transmission of viruses is incomplete. It is likely that the dosage and time of exposure would also determine whether or not infection will finally occur. Therefore, it is crucial to decide on the scenarios that will allow the transmission to longer distances taking into account the environmental conditions (wind speed, relative humidity, temperature). Therefore, we aimed at advancing the understanding of the transfer of airborne particle carriers to humans through advanced droplets fluid flow coupling modeling and simulation,” Professor Dimitris Drikakis, Vice President Global Partnerships at the University of Nicosia and the co-lead author of the new study, told ZME Science.

Drikakis and Talib Dbouk, also from the University of Nicosia, modeled how saliva travels in the air when it is released during a cough by using a computational fluid dynamics simulation. In order to model the complex physics involved, the authors accounted for many factors that can influence the dispersal and evaporation of the saliva droplets, such as temperature, humidity, wind speed, and pressure.

According to the researchers, the model involved running partial differential equations on 1,008 saliva droplets and solving approximately 3.7 million equations in total.

And, like most of us struggling to adjust to life under quarantine, the pair of researchers also had to perform most of this work from home.

“One of the biggest challenges was to set up the fluid mechanics simulation models correctly, thus minimising numerical and modeling uncertainties,” Drikakis said.

“For us, this was the first time in our academic career that we completed a study and discussed all the aspects of the findings and conclusions by working online entirely due to the lockdown”

The simulation showed that even a slight breeze of 4 km/h can cause saliva to travel over 6 meters (18 feet) in just 5 seconds. This suggests that there’s a considerable window of opportunity in which viral transmission can occur, with shorter adults and children at a higher risk if they are located within the trajectory of the coughed saliva droplets.

RelatedPosts

As meat shortages loom, Trump signs executive order to keep meat plants open
COVID-19 hit stock markets as it spread from country to country
Coronavirus crisis might trigger biggest drop in CO2 emissions since WWII
Funeral truck vaccination ad goes viral, causes uptick in local vaccination rate

“Our findings showed that, when a person coughs, the wind speed in an open space environment significantly influences the distance that airborne disease-carrier droplets travel. The main message of the study is that depending on the conditions, the 2 meters social distance will not suffice at mild coughs,” Drikakis said.

“Furthermore, we showed that the droplet concentration can be significant up to considerable distances from the origin of the cough.”

In the future, Drikakis and Dbouk plan on conducting more research to see how wearing a mask might change viral transmission. There are also questions regarding the influence of droplet evaporation under different environmental conditions.

“The public should be aware that environmental conditions can influence the airborne droplet transmission. We believe that our work is important because it addresses health and safety distance guidelines and advances the understanding of spreading of airborne diseases,” Drikakis concluded.

The findings appeared in the journal Physics of Fluids.

Tags: coronavirusCOVID-19viral transmission

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Diseases

That 2022 Hepatitis Outbreak in Kids? It Was Apparently COVID

byMihai Andrei
4 months ago
Genetics

Finally, mRNA vaccines against cancer are starting to become a reality

byMihai Andrei
5 months ago
Diseases

FLiRT and FLuQE, the new COVID variants making the rounds

byMihai Andrei
1 year ago
Diseases

Moderna’s flu + Covid jab produces “higher immune response” than two separate shots

byMihai Andrei
1 year ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.