ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Chemistry

Strongest glass in the world can scratch diamonds

AM-III also works as a semiconductor, allowing it to transfer electrical current.

Tibi PuiubyTibi Puiu
August 10, 2021 - Updated on May 28, 2023
in Chemistry, Materials
A A
Edited and reviewed by Mihai Andrei
Share on FacebookShare on TwitterSubmit to Reddit
A piece of 1mm-wide AM-III glass left scratch marks on the surface of a natural diamond. Photo: National Science Review

Glass is associated with brittleness and fragility rather than strength. However, researchers in China were able to create a new transparent amorphous material that is so strong and hard that it can scratch diamonds. What’s more, this high-tech glass has a semiconductor bandgap, which makes it appealing for solar panels.

Strongest amorphous material in the world

Diamond, the hardest material known to date in the universe, is often used in tools for cutting glass. But the tables have turned.

“Comprehensive mechanical tests demonstrate that the synthesized AM-III carbon is the hardest and strongest amorphous material known so far, which can scratch diamond crystal and approach its strength. The produced AM carbon materials combine outstanding mechanical and electronic properties, and may potentially be used in photovoltaic applications that require ultrahigh strength and wear resistance,” the authors of the new study wrote.

The new material developed by scientists at Yanshan University in Hebei province, China, is tentatively named AM-III and was rated at 113 gigapascals (GPA) in the Vickers hardness test. Vickers hardness, a measure of the hardness of a material, is calculated from the size of an impression produced under load by a pyramid-shaped diamond indenter.

That’s more than many natural diamonds that have a Vickers score in the range of 70-100 GPa, but less than the hardest diamonds that can score up to 150 GPa.

It’s about ten times harder than mild steel and could be 20 to 100 times tougher than most bulletproof windows.

Shaped like diamonds, looks like glass

Like diamonds, AM-III is mostly made of carbon. But while carbon atoms in diamond are arranged in an orderly crystal lattice, glass has a chaotic internal structure typical of an amorphous material. This is why glass is typically weak, but AM-III has micro-structures in the material that appear orderly, just like crystals. So, AM-III is part glass, part crystal, which explains its strength.

In order to make AM-III, the Chinese researchers had to employ a process that is even more complicated than manufacturing artificial diamonds. The most common method for creating synthetic diamonds used in the industry is called high pressure, high temperature (HPHT). During HPHT, carbon is subjected to similarly high temperatures and pressure as those that led to the formation of natural diamonds deep in the Earth, around 1,300 degrees Celsius (1650 to 2370 degrees Fahrenheit) and a pressure 50,000 times greater on the surface.

RelatedPosts

State of matter difference between liquids and solids redefined
New record for human powered flight set by engineering students
Japan casts steel-like glass using levitation
Ordinary glass has extraordinary properties – molecules self align in ultrastable tetris-like structures

Instead of graphite, the raw material of artificial diamonds, the Chinese researchers started off with fullerene, also called buckminsterfullerene. These molecules contain at least 60 atoms of carbon, commonly denoted as C60, arranged in a lattice that can either form a ball or sphere shape and are typically 1nm diameter.

These carbon “footballs” are typically soft and squishy. But after being subjected to great heat and pressure, the carbon balls are crushed and blended together.

The fullerene was subjected to about 25 GPa of pressure and 1,200 degrees Celsius (2,192 degrees Fahrenheit). However, the researchers were careful to reach these conditions very gradually, taking their time over the course of about 12 hours. Immediately subjecting the material to high pressure and heat may have turned the carbon balls into diamonds.

The resulting transparent material is not only hard but also a semiconductor, with a bandgap range almost as effective as silicon, the main semiconductor used in electronics. So besides bulletproof glass, it could prove useful in the solar panel industry where its properties can shine by allowing sunlight to reach photovoltaic cells, while also enhancing the lifespan of the product.

AM-III was described in a recent study published in the journal National Science Review. 

Tags: carbondiamondglass

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Chemistry

Scientists Grow Diamonds at Atmospheric Pressure in Liquid Metal and It’s a Game Changer

byTibi Puiu
4 months ago
Future

This Carbon-14 Radioactive Diamond Battery Could Last Longer Than Human Civilization

byTibi Puiu
4 months ago
Future

Can We Construct Entire Buildings with Recycled Glass? MIT Engineers Are Testing the Limits

byTibi Puiu
9 months ago
Geology

Massive 2,492-Carat Diamond Unearthed in Botswana, Second Largest in History

byTibi Puiu
10 months ago

Recent news

So, Where Is The Center of the Universe?

June 12, 2025

Dehorning Rhinos Looks Brutal But It’s Slashing Poaching Rates by 78 Percent

June 12, 2025

A Chemical Found in Acne Medication Might Help Humans Regrow Limbs Like Salamanders

June 11, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.