ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Supermassive black holes like to wear gas donuts — and we found out why

In all honesty, I'd wear a donut if I could get away with it, too.

Alexandru MicubyAlexandru Micu
December 4, 2018
in Astronomy, Astrophysics, News, Physics, Science, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

Supermassive black holes don’t really form dust ‘donuts’ — the structures surrounding these bodies are more akin to galactic matter fountains, new research reveals.

Supermassive Black Hole.
Artist’s concept of a supermassive black hole. Also shown are the accretion disk (donut) and the outflowing jet of energetic particles.
Image credits NASA-JPL.

Computer simulations and new observations from the Atacama Large Millimeter/submillimeter Array (ALMA) suggest that the gas accretion rings around supermassive black holes (SBH) aren’t ring-shaped at all. Instead, gas being expelled from the SBM interacts with infalling matter to create a complex circulation pattern — one which the authors liken to a fountain.

Jets of matter

Most galaxies revolve around a SBH. These objects can be millions, even billions of times as heavy as the Sun, and they knit together galaxies through sheer gravitational power. Some of these SBHs are actively consuming new material. So far, common wisdom held that instead of falling directly in, matter builds around an active black hole in a donut or ring-shaped structure.

It wasn’t far from the truth but, new research reveals, it wasn’t spot-on either. A study led by Takuma Izumi, a researcher at the National Astronomical Observatory of Japan (NAOJ), reports that this ‘donut’ is not actually a rigid structure, rather a complex collection of highly dynamic gaseous components.

The researchers used the ALMA telescope to observe the Circinus Galaxy and the SBH at its center — which is roughly 14 million light-years away from Earth. They then compared their observations to computer models of gas falling toward a black hole. These simulations were run using the Cray XC30 ATERUI supercomputer operated by NAOJ.

All in all, the team found that there’s a surprising level of interplay between the gases in this structure. Cold molecular gas first falls towards the black hole to form a disk near the plane of rotation. Being so close to a black hole heats up the gas until its atoms break apart into protons and electrons. Not all of these products go on to be swallowed by the black hole. Some are instead expelled above and below the disk but are then snagged by the SBH’s immense gravitational presence, falling back onto the disk.

SBH interaction.
Rough schematic of the process’ dynamics. Pc stands for parsec, equal to about 3.26 light-years (30 trillion km or 19 trillion miles).

These three components circulate continuously, the team explains. Their interaction creates three-dimensional flows of highly turbulent matter around the black hole.

RelatedPosts

New electricity-based method to produce hydrogen could slash 1% of the world’s CO2 emissions
Researchers find black hole that spins almost as fast as (we think) they can spin
Painting wind turbines black can help birds not fly into them
Ecuador will receive 3.6 billion $ not to drill for oil in a historic pact

“Previous theoretical models set a priori assumptions of rigid donuts,” explains co-author Keiichi Wada, a theoretician at Kagoshima University in Japan who lead the simulation study.

“Rather than starting from assumptions, our simulation started from the physical equations and showed for the first time that the gas circulation naturally forms a donut. Our simulation can also explain various observational features of the system.”

The team says their paper finally explains how donut-shaped structures form around active black holes and, according to Izumi, will “rewrite the astronomy textbooks.”

The paper ” Circumnuclear Multiphase Gas in the Circinus Galaxy. II. The Molecular and Atomic Obscuring Structures Revealed with ALMA” has been published in The Astrophysical Journal.

Tags: Accretion ringblackCircinus GalaxygasHoleSupermassive

Share11TweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Climate

Methane Leaks from Fossil Fuels Hit Record Highs. And We’re Still Looking the Other Way

byMihai Andrei
4 weeks ago
Environment

Russia could cut all Europe’s gas supplies this winter

byFermin Koop
3 years ago
Astrophysics

Magnetic field readings point to the structure of Saturn’s interior

byAlexandru Micu
4 years ago
Animals

Painting wind turbines black can help birds not fly into them

byAlexandru Micu
5 years ago

Recent news

Scientists Discover Life Finds a Way in the Deepest, Darkest Trenches on Earth

July 31, 2025

Solid-State Batteries Charge in 3 Minutes, Offer Nearly Double the Range, and Never Catch Fire. So Why Aren’t They In Your Phones and Cars Yet?

July 30, 2025

What if the Secret to Sustainable Cities Was Buried in Roman Cement?

July 30, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.