ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

Magnets could help make less foamy beer

Tibi PuiubyTibi Puiu
December 15, 2014
in Biology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Foamy gold is mostly empty, floats on coffee
Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic
Sea slugs can’t remember their dreams — and here’s why you can’t, either
Step aside sommeliers, this AI is writing reviews

There isn’t a less dreaded sight in any respectable bar than a beer bottle gushing foam. It’s not the bartender’s fault though (not necessarily), since different assortments of beer have their signature foam – some make more, some make less. Breweries nowadays use all sorts of anti-foaming agents, and now food scientists in Belgium – the country with the most breweries per capita –  report a novel approach: using magnets.

Science for the greater beer

Foam gushing off a pint - you either love it or hate it. Credit:
Foam gushing off a pint – you either love it or hate it. Credit:

Foam doesn’t necessarily have to be a bad thing. Actually, the two-finger thick foam in a pint is seen a symbol and hallmark of good beer. Guinness, for instance, adds nitrogen to make the foam tastier. When beer foams, it is obviously due to the creation of bubbles. This phenomenon is referred to as nucleation, which is not that well understood. Basically, what happens is a group  of proteins and smaller polypeptides (additional proteins) act as a group and individually as foam positive agents. One particular protein naturally found in barley is Lipid Transfer Protein 1 (LTP1), and it plays a large role in a beer’s foam.

LPT1 is very hydrophobic – it doesn’t like water – so in order to make means, it latches on to CO2 bubles, which are produced during the fermentation process, as well as during the bottling. The protein piggybacks the CO2 and rises to the surface where it forms a coating on the bubbles maintaining the foam. When fungi infect the barley grains in beer’s malt base, these can cause the beer to overfoam. To counter this, brewers add hops extract, an antifoaming agent that binds to the hydrophobic proteins first.

Writing in the  Journal of Food Engineering, Belgian researchers report an ingenious way to reduce foam. They applied a magnetic field to a malt infused with hops extract to disperse the antifoaming agent into tinier particles. Imagine a big sphere and 1,000 other smaller spheres which when joined together form the big sphere. Which of the two has the greatest surface area? That’s the trick. It’s mostly used in chemical applications, especially when working with expensive catalysts like platinum. You break your agent into smaller parts so the surface area is greater, thus reacting more.

The team reports that the smaller particles were much more effective at binding to more hydrophobins, blocking carbon dioxide and decreasing gushing. When the technique was applied to a real brewery, much lower amounts of hops extract were needed to stop foaming. This translates into savings, making the findings of great interest for the beer industry. Future research is needed to determine whether the magnetic field alone is enough to reduce foaming at an industrial scale.

Tags: beerfoamproteins

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Biology

These 18 Million-Year-Old Teeth Contain the Oldest Proteins Ever and They Came From Giant Prehistoric Beasts

byTudor Tarita
1 month ago
A photo showing a velvet worm's mouth and oral papillae.
Biology

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

byRupendra Brahambhatt
5 months ago
News

The octopus and the beer bottle: how intelligent octopuses are making the most of polluted oceans

byMihai Andrei
7 months ago
Biology

A yeast from Argentina’s Patagonia could usher in a beer revolution

byMihai Andrei
11 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.