ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

New study could topple our beliefs about the origins of handedness

We all have our preferred hand -- but why?

Alexandru MicubyAlexandru Micu
February 20, 2017
in Biology, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

True to their quest of proving mere mortals wrong at every opportunity, researchers have determined that no, handedness isn’t determined by the brain.

Image credits Skitterphoto / Pixabay.

An international team of researchers led by biopsychologists at Ruhr-Universität Bochum have determined that it’s not our brains that make us left- or right-handed, but our spinal cords. The distinction arises through asymmetrical gene expression in the spinal cord that starts taking place even before birth.

“These results fundamentally change our understanding of the cause of hemispheric asymmetries,” the paper reads.

Idle hands

Like most people, you’ve probably pondered what determines handedness at one point or another. Also like most people, you’ve probably figured it’s something to do with the brain then called the issue settled with a wave of your preferred hand.

Up to now, most research pointed to the same conclusion. Ultrasound investigations carried out in the 1980s showed that unborn children develop a preference for moving the left or right hand by the eight week in the womb. By the 13th week, a clear bias for sucking on the left or right thumb became evident, according to a different study. The prevailing theory was that this comes down to differences in gene expression between the brain’s right and left hemispheres — after all, they control our limbs’ movement.

A new study published in the journal eLife shows that this isn’t the case, however. Limb movement is indeed initiated in the motor cortex, and then passed on to the spinal cord which translates this command into movement. But in the early days of our development, the spinal cord isn’t directly connected to the motor cortex — and evidence of handedness arises even before this connection forms.

This led the team to suspect that the handedness doesn’t arise from the motor cortex, but rather in the spinal cord.

Gaining an upper hand

To test their theory, the researchers analyzed gene expression in the spinal cord while handedness seems to set in —  between the eighth to the twelfth week of pregnancy. They focused their attention on the areas that are involved in passing on movement commands to the limbs.

RelatedPosts

Researchers find rare genetic variants linked to left-handedness
Why snails coil in one direction — and how to change it
What ‘left-handed’ fish can teach us about asymetrical brains
Slovenia just declared water a universal right for all

By looking at mitochondrial RNA expression and DNA methylation processes (which can shut down a gene without removing it from the genome) in the spinal cords of five fetuses, the team found several gene expression asymmetries between the left and right sides.

“Our findings suggest that molecular mechanisms for epigenetic regulation within the spinal cord constitute the starting point for handedness, implying a fundamental shift in our understanding of the ontogenesis of hemispheric asymmetries in humans.

The cause, they say, isn’t genetic — rather, they believe these asymmetries arise from developmental and environmental factors. These myriad factors add together and can lead to methylation in some parts of the genome. As this process takes place at a different intensity in the left and right parts of the spinal cord, the same genome ends up expressing differently between the two sides.

Right now, there isn’t enough evidence to prove or refute the theory. It doesn’t really fit in with what we believed about handedness up to now, so more research (with bigger samples) are needed before we re-write medicine textbooks.

But it does raise the possibility that our handedness is determined even before our brains have a say about it. That just like us, our brains have to play the hand they’re dealt.

The full paper “Epigenetic regulation of lateralized fetal spinal gene expression underlies hemispheric asymmetries” has been published in the journal eLife.

 

Tags: AsymmetryDominantHandednessLeftright

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Animals

Elephants are left- or right-trunked — and it’s all in their amazing wrinkles

byTibi Puiu
9 months ago
Genetics

Researchers find rare genetic variants linked to left-handedness

byTibi Puiu
1 year ago
Mind and Brain

Left, right, or ambidextrous: What determines handedness?

byTibi Puiu
3 years ago
Science

Common bottlenose dolphins are likely right-finned

byAlexandru Micu
6 years ago

Recent news

China Resurrected an Abandoned Soviet ‘Sea Monster’ That’s Part Airplane, Part Hovercraft

June 30, 2025
great white shark

This Shark Expert Has Spent Decades Studying Attacks and Says We’ve Been Afraid for the Wrong Reasons

June 30, 2025

A Rocket Carried Cannabis Seeds and 166 Human Remains into Space But Their Capsule Never Made It Back

June 30, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.