ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment → Animals

Some deep-water sharks can float up, contrary to conventional wisdom

Researchers at University of Hawaii, Manoa in collaboration with a team from the University of Tokyo were surprised to find not one, but two species of deep-water sharks that have positive buoyancy. Most sharks have a negative buoyancy, meaning if they stop swimming they'll sink to the bottom, and some researchers have posited that there may be some species with neutral buoyancy. Finding sharks that defy this conventional wisdom is definitely an important discovery. Now the researchers are trying to find out how the positive buoyancy is attained and whether other shark species have this ability.

Tibi PuiubyTibi Puiu
June 24, 2015
in Animals, Biology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

Researchers at University of Hawaii, Manoa in collaboration with a team from the University of Tokyo were surprised to find not one, but two species of deep-water sharks that have positive buoyancy. Most sharks have a negative buoyancy, meaning if they stop swimming they’ll sink to the bottom, and some researchers have posited that there may be some species with neutral buoyancy. Finding sharks that defy this conventional wisdom is definitely an important discovery. Now the researchers are trying to find out how the positive buoyancy is attained and whether other shark species have this ability.

Floating sharks

The prickly shark, Echinorhinus cookei, is a large predatory shark with a pan-Pacific distribution. Prickly sharks are amazing looking and have a traditional shark body type although they are a bit thicker around the middle than many other species. Photo: Wikipedia
The prickly shark, Echinorhinus cookei, is a large predatory shark with a pan-Pacific distribution. Prickly sharks are amazing looking and have a traditional shark body type although they are a bit thicker around the middle than many other species. Photo: Wikipedia

Sharks’  cartilaginous skeletons are less dense than bones, and most employ an oil-filled liver to increase buoyancy. Despite this, sharks can’t float and have to start swimming at some point to avoid sinking to the bottom of the ocean. Some scientists have considered that maybe some species are neutral buoyant based on observations of some species which live in austere environments (low oxygen, few food resources). You can imagine how remarkable it was for the Hawaiian researchers to discover that the  sixgill and prickly sharks have slightly positive buoyancy which helps them slowly rise to the surface without any effort.

The team strapped cameras, lights and sensors to the several specimens from each species. Each 30 seconds, a strobe would turn on and light the shark’s surroundings, while a camera instantly took a picture. Meanwhile, sensors recorded the temperature and depth of the water. To record when the shark began to swim and measure the effort that went into the process, an accelerometer was also added. After a predefined time, the whole pack detached from the shark and rose to the surface from which it was collected by the researchers.

The researchers were so surprised by the results that they had to recheck their equipment and start fresh with a new set of experiments. But the results stayed consistent: the sixgill and prickly sharks can float. . “It was not at all what we expected to find,” said study co-author Carl Meyer, an assistant researcher at the University of Hawaii at Manoa’s Hawaii Institute of Marine Biology. “Conventional wisdom suggests sharks are generally negatively buoyant — they’ll sink if they stop swimming.”

“When I first downloaded the camera, I thought it had failed because all I saw were thousands of completely black frames. Suddenly a string of images appeared with a brightly-lit, alien-looking reef and strange deep-sea invertebrates. I was elated and realized that the black frames resulted from the shark swimming around too high in the water column for the camera strobe to illuminate the seabed.”

Data from the accelerometer clearly showed that when sharks swam, the muscles and tail worked harder at any given speed when the individuals were going up. “When they were going uphill, they could glide for minutes at a time without beating their tails,” Meyer added.

It’s not clear how this trait appeared, however. Deep-water sharks spend their day time at lower depths (~600 meters), and start swimming towards the surface from sunset to a higher depth (~300 meters). The buoyancy could be a physiological trait which allows the sharks to explore the cold, deep habitats. It may also be result of some evolutionary mechanism that allows the sharks to sneak up on prey or conserve energy. There’s still much to learn, that’s for sure.

“Finding positive buoyancy in [deep-sea] sharks is demonstrative that we have a lot to learn about deep-sea animals and how they survive,” Meyer said.

Findings were documented in the journal PLOS ONE.

RelatedPosts

Scientists find the first plant-eating shark — but it still likes to hunt
Overfishing is causing shark and ray populations to plummet
Megalodon May Have Eaten Whatever It Could Find to Feed Its 100,000-Calorie-Per-Day Diet
Scientists find deep-sea miniature shark that glows in the dark
Tags: buoyancyshark

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Megalodon May Have Eaten Whatever It Could Find to Feed Its 100,000-Calorie-Per-Day Diet

byTibi Puiu
3 weeks ago
Future

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

byTudor Tarita
2 months ago
Fish

The Lemon shark: an elusive but familiar predator

byShiella Olimpos
2 years ago
Credit: Wikimedia Commons.
Animals

Why do hammerhead sharks have hammer-shaped heads? When a defect becomes an asset

byGavin Naylor
3 years ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.