ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment → Animals

Camouflage or bright colours: what’s better for survival?

Tibi PuiubyTibi Puiu
March 12, 2014
in Animals, Biology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

This plant evolved camouflage to hide from humans
How antivenom is made and why it’s so darn expensive
Insects were masters of camouflage even 100 million years ago
This Moth’s Wings Create a Mind-Bending 3D Optical Illusion to Avoid Being Eaten

The wild is often home to a game of hide or seek, and animals need to be well adapted to their part of the game. For those who are constantly juggling the role of prey, however, the game seems to always favor them less. We, as humans, have little direct contact with these underlying mechanics of survival, as we sit comfortably on the crown spot of the food chain. For the millions of species out there fighting for survival this is an entirely different matter, but of course nature has granted each of them with a trait or skill.

A macro shot of a Blue Poison Dart Frog (Dendrobates Azureus). You wouldn't want to eat this fellow, and its bright colours serve as a warning. (c) MSU
A macro shot of a Blue Poison Dart Frog (Dendrobates Azureus). You wouldn’t want to eat this fellow, and its bright colours serve as a warning. (c) MSU

It all boils down to avoid being eaten, and some of the paths evolution has taken involve hiding or poison. Being a poisonous species has its benefits and downfalls; for one the chances of you being eaten plummet as the trait is accompanied by bright colouring (yellow, black, red) which predators have learned to avoid, but secreting poison comes at huge energy expenses, so not a lot of species can afford it. The most beaten path involves hiding through camouflage. Some species however choose to go in between: they flatter they bright, venomous-like colouring out in the open, despite they lack the accompanying poison altogether. Their game is all bluff.

How dangerous is this approach? A team of researchers Michigan State University analyzed how coluor-coded communications evolve and found that this takes place in gradual steps, instead of a sudden leap for garish colouring adoption. This tells us that the route pass the middle ground from simple camouflage to poison mimicker is layered with many perils, which few may undergo.

“In some cases, nonpoisonous prey gave up their protection of camouflage and acquired bright colors,” said Kenna Lehmann, who conducted the research. “How did these imitators get past that tricky middle ground, where they can be easily seen, but they don’t quite resemble colorful toxic prey? And why take the risk?”

 MSU scientists show that nontoxic imposters, like king snakes, benefit from giving off a poisonous persona, even when the signals are not even close.
MSU scientists show that nontoxic imposters, like king snakes, benefit from giving off a poisonous persona, even when the signals are not even close.

Colourful impostors

The higher the risk, the higher the reward it seems. Predators, evolutionary conditioned to stay away from poisonous species, react to the impersonations and avoid eating the imposters. It seems to work. For instance coral snakes are truly toxic animals, while king snakes are not, but the two very much look alike. So, why don’t the imitators develop poison of their own and be done with it? The transition is in itself extremely costly – and developing poison comes at tremendous energy expenditure.

“Leaving the safety of the cryptic, camouflage peak to go through the exposed adaptive valley over many generations is a dangerous journey,” Lehmann explained. “To take the risk of traversing the dangerous middle ground – where they don’t look enough like toxic prey – is too great in many cases. Toxins can be costly to produce. If prey gain protection by colors alone, then it doesn’t make evolutionary sense to expend additional energy developing the poison.”

For the study, the scientists used evolving populations of digital organisms in a virtual world called Avida. Using this model, the researchers looked at how specialized programs compete and reproduce. The software is developed in such a manner that mutations occur when Avida beings reproduce, and thus scientists digital organisms evolve, just like living things.

Findings were reported in the journal PLOS ONE.

Tags: camouflagepoison

Share1TweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Did WWI Dazzle Camouflage Actually Work? Scientists Revisit a 105-Year-Old Experiment to Find Out

byTibi Puiu
5 months ago
Animals

This Moth’s Wings Create a Mind-Bending 3D Optical Illusion to Avoid Being Eaten

byTibi Puiu
6 months ago
News

Russian chess player is accused of poisoning her opponent

byMihai Andrei
1 year ago
Animals

Crab spiders cooperate to camouflage themselves as a flower

byMihai Andrei
1 year ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.