ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Can aspirin reduce the risk of death in hospitalized COVID-19 patients?

Maybe... if we look at a new study.

Melvin SanicasbyMelvin Sanicas
November 11, 2020
in Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Researchers at the University of Maryland School of Medicine showed COVID-19 patients who were taking a daily low-dose aspirin for cardiovascular disease had a significantly lower risk of complications and death compared to those who were not taking aspirin.

The researchers looked through the medical records of 412 COVID-19 patients, age 55 on average, who were hospitalized over the past few months due to complications of SARS-CoV-2 infection. About a quarter of the patients were taking a daily low-dose aspirin (usually 81 milligrams) before they were admitted or right after admission to manage their cardiovascular disease.

The researchers found aspirin use was associated with a 44 percent reduction in the risk of being put on a mechanical ventilator, a 43 percent decrease in the risk of ICU admission, and — most important of all — a 47 percent decrease in the risk of dying in the hospital compared to those who were not taking aspirin. The patients in the aspirin group did not experience a significant increase in adverse events such as major bleeding while hospitalized. The study definitely showed an association or correlation but remember correlation does not mean causation.

Nevertheless, this is promising because if this finding is confirmed (through clinical trials with larger sample size), it would make aspirin the first widely available, over-the-counter medication to reduce mortality in COVID-19 patients. Aspirin is a very potent antiplatelet agent. As soon as aspirin interacts with a platelet, that platelet becomes inactivated and can no longer create clots.

British Heart Foundation | How does aspirin work?

In July a study published in the Journal of the American College of Cardiology reviewed the effect of anticoagulant drugs on outcomes among hospitalized Covid-19 patients. Like the recent aspirin study, the investigators found that anticoagulants significantly reduced the risk of death among certain groups of people with Covid-19. Although these studies are encouraging, we need to wait for further studies to be done. Aspirin came into being in the late 1890s in the form of acetylsalicylic acid when chemist Felix Hoffmann at Bayer in Germany used it for his father’s rheumatism but salicin, which comes from the bark of the willow plant has been widely used hundreds of years before that.

Now, aspirin Is not only used to reduce pain, fever, or inflammation but is also the cornerstone of therapy to prevent a heart attack or a stroke since 1970s but the drug is not without risks. The greatest risk associated with aspirin is gastrointestinal bleeding so people who have a history of peptic ulcers or bleeding from the stomach should not take it.

RECOVERY trial update: Aspirin is now being studied as a possible treatment for patients admitted to hospital with COVID-19.https://t.co/PQXyaR1y6l

— Martin Landray (@MartinLandray) November 6, 2020

The good news is the United Kingdom’s Recovery Trial, a large randomized controlled clinical study of potential COVID-19 treatments, will investigate aspirin as a possible therapy. Why aspirin? Patients with COVID-19 are at higher risk of blood clots forming in their blood vessels. Platelets, small cell fragments in the blood that stop bleeding, seem to be hyperreactive in COVID-19 and may be involved in the clotting complications.

RelatedPosts

What Benjamin Franklin’s battles with a deadly virus that swept Colonial America can teach us about our own struggles with anti-vaxxers
NASA developed a new ventilator for COVID-19 patients in just 37 days
Coronavirus may damage the placenta during pregnancy
Coronavirus vs influenza in six simple charts

Aspirin is already widely used to prevent blood clots in many other conditions but enrolling patients in a randomized clinical trial is the best way to assess whether there are clear benefits for patients with COVID-19 and whether those benefits outweigh any potential side-effects such as the risk of bleeding. At least 2,000 patients are expected to get 150mg of aspirin daily along with the usual regimen. Hopefully, in a few months, we’ll know whether aspirin is indeed good for patients with COVID-19.

The Recovery trial was the first to show that dexamethasone, a steroid that is also cheap and widely available, could save the lives of people severely ill with Covid-19. It also showed that the anti-malarial drug hydroxychloroquine provided no benefit in treating COVID-19 patients.

Tags: aspirincoronavirusCOVID-19SARS-CoV-2

ShareTweetShare
Melvin Sanicas

Melvin Sanicas

Melvin is a curious lifelong learner. He studied biology, medicine, health economics, infectious diseases, clinical development, and public policy. He writes about global health, vaccines, outbreaks, and pathogens.

Related Posts

Diseases

That 2022 Hepatitis Outbreak in Kids? It Was Apparently COVID

byMihai Andrei
4 months ago
Genetics

Finally, mRNA vaccines against cancer are starting to become a reality

byMihai Andrei
5 months ago
Health

Scientists uncover how aspirin may help stop cancer from spreading

byAlexandra Gerea
5 months ago
Health

Nearly Half of Americans Still Believe Daily Aspirin Is a Good Idea — Here’s Why They’re Wrong

byTibi Puiu
6 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.