ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Physicists make 2-D supersolid that flows without friction, a world first

It's like an ice cube flowing on water without friction.

Tibi PuiubyTibi Puiu
August 20, 2021
in News, Physics, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit
Credit: IQOQI Innsbruck/Harald Ritsch.

Almost 50 years since scientists imagined what supersolidity — a peculiar quantum state whereby atoms are arranged in a regular pattern but, at the same time, can flow frictionless — might look like, researchers have now demonstrated a two-dimensional supersolid quantum gas in the lab for the first time.

In a gas described by classical physics, you could theoretically label every single constituent atom of the gas and always know its position and momentum. However, you can never know this kind of information for each particle individually in a quantum gas.

At relatively high temperatures, the classical gas model is a good approximation for the behavior of the fluid. After all, engineers have been using classical physics equations for decades and our planes fly nicely and predictably, for instance. However, at very low temperatures approaching absolute zero, atoms and molecules slow to a crawl, and fluid behavior is more accurately described as a quantum gas — a behavior that can be quite challenging to wrap one’s head around.

For instance, at 0.000001 degrees above absolute zero, atoms become so densely packed they behave like one super atom, acting in unison. Atoms can form an exotic form of matter called Bose-Einstein condensate (BEC), also known as the fifth state of matter, in which individual atoms are completely delocalized. This means that the same atom exists at each point within the condensate at any given time, something that makes no sense from a classical physics perspective. It is what it is.

Quantum fluids like BECs tend to exhibit some “quantum” macroscopic behaviors such as superfluidity (fluid flow with zero viscosity) or superconductivity (electrical flow with zero resistance). Apparently, there’s also such a thing as supersolids, bizarre materials whose atoms are arranged in an orderly lattice but which, nevertheless, flow without friction.

In 2019, researchers led by Francesca Ferlaino, a physicist at the University of Innsbruck in Austra, demonstrated a supersolid state in an ultracold quantum gas of magnetic atoms for the first time. However, this effort could only attain supersolid states in a string of one-dimensional droplets. Now, the researchers have pushed the envelope by extending this phenomenon to two dimensions.

 “Normally, you would think that each atom would be found in a specific droplet, with no way to get between them,” says Matthew Norcia of Francesca Ferlaino’s team.

“However, in the supersolid state, each particle is delocalized across all the droplets, existing simultaneously in each droplet. So basically, you have a system with a series of high-density regions (the droplets) that all share the same delocalized atoms.”

The 2-D crystal-like structure is locked in a rigid structure but also delocalized at the same time, a phenomenon that is made possible strong polarity of magnetic ultra-chilled atoms. In doing so, the physicists have created a solid structure with the properties of a superfluid.

RelatedPosts

Certainly Uncertain: What’s Heisenberg’s Uncertainty Principle
What are Gravitational Waves?
Side stepping Heisenberg’s Uncertainty Principle isn’t easy
What is Superposition? Schrödinger’s Cat Experiment Explained

Like any respectable quantum physics experiment, this research opens up more questions than it answers. For instance, it’s not clear if it’s possible to make supersolids at a larger scale.

The findings appeared in the journal Nature.

Tags: quantum physicssupersolid

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

A graphical depiction of an atom with the electrons around the nucleus.
News

After 100 years, physicists still don’t agree what quantum physics actually means

byMihai Andrei
2 weeks ago
News

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

byTibi Puiu
2 months ago
Science

Researchers create a new type of “time crystal” inside a diamond

byMihai Andrei
5 months ago
Science

Scientists Just Turned Light Into a ‘Supersolid’: Both Solid and Liquid at The Same Time

byTibi Puiu
5 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.