ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Nanotechnology

‘Pop-up’ method makes 3-D complex nano structures from 2-D, similar to a children’s book

Researchers at Northwestern University and the University of Illinois at Urbana-Champaign recently demonstrated a new technique for building complex and very fine 3D micro and nano structures out of 2-D shapes. The whole process is very similar to how a children’s pop-up book works, starting as a flat 2D surface only to expand into a 3D shape when prompted. The authors note that the pop-up method has various advantages over 3D printing, including use of multiple materials during the fabrication process and integration with electronics.

Tibi PuiubyTibi Puiu
January 9, 2015 - Updated on November 16, 2020
in Nanotechnology, News, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Dog born without front legs can walk thanks to 3D Printing
This machine 3-D prints metal objects in mid-air
A Unique Light-Sensitive Resin Could Make 3D Printing Faster and Cleaner
University of California 3D printed fish are the most advanced microbots we built to date

Everybody’s excited about 3-D printing, but let’s put it aside for just one second. Researchers at Northwestern University and the University of Illinois at Urbana-Champaign recently demonstrated a new technique for building complex and very fine 3D micro and nano structures out of 2-D shapes. The whole process is very similar to how a  children’s pop-up book works, starting as a flat 2D surface only to expand into a 3D shape when prompted. The authors note that the pop-up method has various advantages over 3D printing, including use of multiple materials during the fabrication process and integration with electronics.

Various examples of flower-like structures formed from a two-dimensional structure transferred onto a stretched elastic material. Credit: University of Illinois
Various examples of flower-like structures formed from a two-dimensional structure transferred onto a stretched elastic material. Credit: University of Illinois

“In just one shot you get your structure,” said Northwestern’s Yonggang Huang, one of three co-corresponding authors on the study. “We first fabricate a two-dimensional structure on a stretched elastic material. Then we release the tension, and up pops a 3-D structure. The 2-D structure must have some place to go, so it pops up.”

3D silicon microstructures made using the pop-up method, shown here in an image taken with an electron microscope. Credit: University of Illinois College of Engineering
3D silicon microstructures made using the pop-up method, shown here in an image taken with an electron microscope. Credit: University of Illinois College of Engineering

Basically, the method exploits compression buckling, combining strong points of adhesion with weak points between the 2D structure placed on an elastomer. When the tension from the stretch is released, the compression buckling takes over. The strong adhesion points stay in place, while the weak ones break away. In the end, a 3D predictable structure pops out.

“A key, unique feature of these approaches to 3-D microarchitectures is that they work equally well with a very wide variety of materials, including the highest performance semiconductors, such as device-grade silicon, and fully formed, state-of-the-art planar devices and systems,” said John A. Rogers, the paper’s third co-corresponding author and a Swanlund Chair and professor of materials science and engineering at the University of Illinois. “We believe, as a result, that these ideas have relevance to nearly every class of microsystem technology — from electronics to photonics, optoelectronics, microelectromechanical structures and others.”

A mechanical model is used to predict where the strong and weak adhesion points need to be for the 2D structure to expand into a desired 3D one. Credit: Sheng Xu et al./Science
A mechanical model is used to predict where the strong and weak adhesion points need to be for the 2D structure to expand into a desired 3D one. Credit: Sheng Xu et al./Science

The pop-up method is exciting because it’s fast and inexpensive, with the added advantage over 3D printing of being capable of integrating more than one material in the structure. It’s also possible to build semiconductors or single crystalline metals, two important requirements in modern manufacturing today very difficult to achieve if not impossible using 3-D printing. Using this novel technique, scientists can build structure on both micro and nano scales down the thickness of only 100 nanometers. The resulting geometries, made using computer models, can be of intricate complexity.

Scientists at Zhejiang University, Hangzhou, China; Hanyang University, Seoul, Korea; and East China University of Science and Technology, Shanghai were also involved in the study. The U.S. Department of Energy supported the research. The paper appeared in the journal Science.

Tags: 3d printingmanufacturing methods

ShareTweetShare
Tibi Puiu

Tibi Puiu

Related Posts

Biology

Scientists 3D Printed Microscopic Elephants and Barcodes Inside Cells for the First Time

byRupendra Brahambhatt
2 weeks ago
Future

This Ancient Grain Could Power the Future of 3D-Printed Food

byMihai Andrei
3 weeks ago
A person is designing a 3D object on a tablet.
Environmental Issues

A Unique Light-Sensitive Resin Could Make 3D Printing Faster and Cleaner

byRupendra Brahambhatt
2 months ago
Concept image of 3D printed red blood cells.
Biology

This Injectable Ink Lets Doctors 3D Print Tissues Inside the Body Using Only Ultrasound

byRupendra Brahambhatt
2 months ago

Recent news

Scientists Discover Life Finds a Way in the Deepest, Darkest Trenches on Earth

July 31, 2025

Solid-State Batteries Charge in 3 Minutes, Offer Nearly Double the Range, and Never Catch Fire. So Why Aren’t They In Your Phones and Cars Yet?

July 30, 2025

What if the Secret to Sustainable Cities Was Buried in Roman Cement?

July 30, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.