ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health

Newly discovered “insulin-like” molecule could change how we treat diabetes

Both insulin and the newly discovered FGF1 regulate blood sugar levels, but they each do so using independent pathways.

Tibi PuiubyTibi Puiu
January 4, 2022
in Health, News
A A
Share on FacebookShare on TwitterSubmit to Reddit
Credit: Salk Institute.

Scientists at the prestigious Salk Institute have discovered a second insulin-like molecule produced by fat tissue that, like insulin, quickly regulates blood glucose. In a new study, they found that although the hormone has almost identical effects on the human body as insulin, it uses a different molecular pathway, thereby potentially circumventing insulin resistance. The remarkable findings could lead to novel treatments for diabetes and may even open the doors to new areas of metabolic research.

Before insulin was discovered in the 1920s at the University of Toronto, patients with type 1 diabetes rarely lived for more than a year or two. But after the hormone was successfully isolated it quickly saved lives, going on to become one of the most important medical breakthroughs of the 20th century. Today, millions of people across the world are diagnosed with type 1 or type 2 diabetes and benefit from insulin treatments. However, these treatments aren’t perfect due to problems arising from insulin resistance.

Insulin is released by your pancreas to lower blood sugar and keep it in the normal range. It achieves this goal by inhibiting the breakdown of fat cells into free fatty acids, a process known as lipolysis. In people with insulin resistance, glucose is not removed properly from the blood because the liver, fat, and muscles don’t respond well to insulin signaling. Furthermore, lipolysis occurs in excess, leading to increases in fatty acid levels, which prompt the liver to produce more glucose, compounding the already high blood sugar levels. This positive feedback loop can exacerbate insulin resistance, which characterizes diabetes and obesity.

The pancreas compensates by producing more insulin to help glucose from the food enter your cells. But if excess glucose in the blood remains high, the patient is at risk of developing prediabetes and, eventually, type 2 diabetes.

But insulin isn’t alone in regulating blood sugar in the body. In a new study published in the journal Cell Metabolism, Salk scientists showed that a hormone called FGF1 also regulates blood glucose through inhibiting lipolysis — a behavior that remarkably mirrors that of insulin.

“Finding a second hormone that suppresses lipolysis and lowers glucose is a scientific breakthrough,” says Professor Ronald Evans, co-senior author of the new study and Director of the Gene Expression Laboratory at Salk. “We have identified a new player in regulating fat lipolysis that will help us understand how energy stores are managed in the body.”

Previously, researchers injected FGF1 into mice with insulin resistance, resulting in dramatically lower blood sugar levels. However, why exactly this happens remained a mystery until Evans and colleagues showed that FGF1 suppresses lipolysis and regulates the production of glucose in the liver. That’s exactly what insulin does, which begs the question: do these molecules also share the same pathways to regulate blood sugar?

RelatedPosts

Older diabetics face high over-treatment risk
Obesity drug halves risk of type 2 diabetes in clinical trial
Broccoli-derived compound could become a new treatment for type 2 diabetes
A new molecular drug that mimics exercise might help Diabetes patients

Turns out that they don’t and that’s actually fantastic news. Insulin suppresses lipolysis through PDE3B, an enzyme that initiates the signaling pathway, whereas the FGF1 hormone works through the PDE4 pathway.

“This mechanism is basically a second loop, with all the advantages of a parallel pathway. In insulin resistance, insulin signaling is impaired. However, with a different signaling cascade, if one is not working, the other can. That way you still have the control of lipolysis and blood glucose regulation,” says first author Gencer Sancar, a postdoctoral researcher in the Evans lab.

Since FGF1 uses a different pathway, the authors hope that the hormone will prove to be a new promising therapeutic route for diabetic patients.

Tags: diabetesFGF1insulin

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Health

Drinking Sugar May Be Far Worse for You Than Eating It, Scientists Say

byTibi Puiu
3 days ago
Health

The world is facing a rising dementia crisis. The worst is in China

byMihai Andrei
1 month ago
Health

Your Gut Bacteria Are Eating More Than We Thought and That’s a Good Thing

byAlexandra Gerea
3 months ago
Health

Just Five Days of Junk Food Can Throw Off Your Brain’s Metabolism

byMihai Andrei
4 months ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.