ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health → Genetics

Scientists discover gene for trust – here’s how it could be linked to good health

A gene can help explain why people who easily trust others have better health.

Giuseppe 'Nick' GiordanobyGiuseppe 'Nick' Giordano
June 10, 2024
in Genetics, News
A A
Share on FacebookShare on TwitterSubmit to Reddit
Woman with back to camera holding man's hand with cityscape in the background.
Credit: Pexels.

If a distressed stranger knocked on your door asking to use your phone, would you oblige? How about lending them a fiver for the bus, if they assured you they’d return and pay you back? In today’s fractured world, trust seems elusive and divisions run deep. A lot of people find it hard to trust strangers, perhaps in particular those who are different to us.

But why? A recent breakthrough by our international team of researchers, published in Scientific Reports, has shed light on the genetic basis of trust. We discovered that our ability to trust strangers may be more than just a social or psychological trait – it could be rooted in our DNA.

This is important, as it turns out that trusting people might actually live longer, healthier lives compared to their more sceptical counterparts.

Research has shown that those who trust strangers have a significantly lower risk of cardiovascular disease, even after accounting for factors such as smoking, age and biological sex. Yet understanding why this is the case remains elusive.

For decades, the study of trust has been the domain of social and political sciences, viewed primarily as a societal construct. Two main theories have emerged to explain why some people are more trusting than others. One suggests that trust is a stable trait shaped by early life experiences.

The other posits that it’s influenced by a person’s ongoing evaluation of the social environment. I can easily imagine that the answer to the standard social trust question: “Would you say that most people can be trusted, or you can’t be too careful when dealing with people?” would depend on whether you had been robbed the day before, or if you’d had your dropped wallet returned.

This is where my research comes in. I currently lead the Genetic and Molecular Epidemiology unit at Lund University, Sweden. For the past 15 years, I have been on a quest to uncover the biological underpinnings of trust and its links with better health. My most recent study, involving 33,882 Danish blood donors, marks a significant milestone in this endeavour.

RelatedPosts

Chinese leader pressures Trump to uphold milestone climate change pact if he’s elected
The Egyptian pyramids… as seen from the KFC
From Titanic to AI-tanic: AI shatters speed barriers in iceberg surveillance
Why bigger isn’t necessarily faster: a look at animal speed limit

With genetic data and information on our participants’ propensity to trust strangers, we conducted the largest genome-wide association study (studies linking traits with genes) of social trust to date. We obtained individual trust levels from participants’ answers to bespoke and validated social trust questions. Our analyses identified a single gene, PLPP4, which was strongly associated with the trait of trusting others.

We further discovered that the PLPP4 gene explained a substantial 6% of the variation in social trust within the study population. That means that if you take two people who have similar upbringing, education and life experiences, this gene alone could account for 6% of the difference in how much they trust others.

This may sound like a small number but it is a significant finding in the realm of genetics, especially when considering the complexity of human behaviour. To put this into context, a gene called “FTO” is often cited for explaining differences in body mass index among Europeans, yet it only accounts for 0.34% of these differences.

Fight or flight

But what does this mean in practical terms? I believe that the discovery of the “trust gene” could serve as a bridge between biology and social science, challenging the traditional divide between the two fields. Moreover, the fact that this gene is predominantly expressed in the brain raises intriguing questions about its role in shaping neural pathways and signalling mechanisms.

While it’s tempting to speculate that manipulating this gene could enhance trust, I must caution against such simplistic interpretations. Rather than directly impacting trust levels, this gene likely plays a role in shaping circuits in the brain that are associated with our innate “fight or flight” survival mechanism.

This system, hardwired into each of us, governs our response to stress, via the release of certain hormones. Though useful in the short-term, longer-term exposure to stress hormones can be detrimental to health – in fact it’s been linked to cardiovascular problems, anxiety and depression.

We suspect the PLPP4 gene may somehow soften the fight or flight mechanism. And if our fight or flight system is less intense when we encounter new people, it makes sense that having an innate propensity to trust others could have substantial health benefit. Indeed, if trusting others acts as a buffer against stress, thereby reducing cortisol levels, it may lower the risk of cardiovascular disease and depression.

The implications could be profound. However, further research is needed to unravel the complex interplay between genetics, trust and health. That said, the discovery of a genetic basis for trust opens up new avenues for interdisciplinary research, offering fresh insights into the intricate connections between biology, behaviour and society.

As we continue to unravel the mysteries of trust, one thing is clear: understanding its genetic roots may hold the key to fostering healthier, more cohesive communities in an increasingly fragmented world.

Giuseppe ‘Nick’ Giordano, Associate Professor of Public Health Epidemiology, Lund University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

ShareTweetShare
Giuseppe 'Nick' Giordano

Giuseppe 'Nick' Giordano

I am currently the Head of the Genetic and Molecular Epidemiology (GAME) unit at Lund University Diabetes Centre, Sweden, currently busy with several IMI/EU-funded projects, whose focus are on type 2 diabetes and obesity research. In parallel to my non-communicable diseases research, I maintain links with Political and Social Sciences, and Public Health. As such, I am currently investigating the genetic underpinnings of (dis)trusting personality traits and their links to cardiovascular health outcomes. I am a relative latecomer to academia, having practised dentistry in the UK and Australia for 14 years, prior to defending my PhD at Lund University Medical Faculty, in May, 2012.

Related Posts

Environment

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

byMihai Andrei
1 day ago
Health

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

byMihai Andrei
1 day ago
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus
News

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

byTibi Puiu
1 day ago
News

Drone fishing is already a thing. It’s also already a problem

byMihai Andrei
1 day ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.