ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Far-UVC lamps could be the future of indoor disinfection during the pandemic (and beyond)

The frequency of the radiation is too low to penetrate the human skin but still enough to destroy virsues within minutes.

Tibi PuiubyTibi Puiu
May 11, 2020 - Updated on May 13, 2020
in Health, News
A A
Share on FacebookShare on TwitterSubmit to Reddit
Picture of Care222, a far-UVC lamp manufactured by Ushio, a Japanese company. Credit: Ushio.

A new type of ultraviolet lamp could become ubiquitous in airports, train stations, restaurants, and just about any crowded indoor public space. Tests suggest that exposure to the light emitted by UVC lamps kills the coronavirus on surfaces within minutes with no evidence so far that it might harm humans.

Fatal for viruses, harmless to humans

There are three main types of ultraviolet rays: UVA, UVB, and UVC. UVA rays can penetrate the skin into its innermost layers and are responsible for premature aging of the skin, as well as skin cancer. Tanning beds can emit two to five times more UVA radiation than the sun, which is why doctors advise against their use.

UVB mainly affects the outer layers of the skin, causing sunburns, premature aging of the skin, and skin cancer. 

UVC radiation is the strongest, most dangerous form of UV light. But you don’t have to worry about this latter class of ultraviolet rays since they’re all blocked by the planet’s atmosphere and never reach your skin.

However, far-UVC lamps have been employed for some time in hospitals and other settings where disinfection is necessary, as they are highly effective at killing bacteria, viruses, and molds.

Although UVC rays are typically extremely dangerous, far-UVC rays have a wavelength of 222 nanometers. At this frequency, the rays cannot penetrate the skin nor the eyes, so humans should be safe when exposed to them. The exposure, however, is still lethal to viruses.

Researchers at the University of Columbia’s Center for Radiological Research are experimenting with such far-UVC lamps for use against SARS-CoV-2.

RelatedPosts

More than 24,000 AI-readable coronavirus scientific articles go online
The most promising coronavirus vaccine passes key safety trial
Researchers are working on an antiviral mask that kills the coronavirus on contact
Finally, mRNA vaccines against cancer are starting to become a reality

Tests were performed at a highly bio-secure laboratory at Columbia University, which showed the coronavirus is killed within minutes of exposure to the far-UVC rays.

To determine safety, the researchers also exposed mice to far-UVC rays for eight hours a day, five days a week. That’s far longer than any human can expect to be exposed to this kind of radiation when walking in a restaurant or using public transit. What’s more, the intensity of the radiation that the rodents were exposed to was 20 times greater than what researchers expect humans would see.

DAVID J. BRENNER, Director of the Center for Radiological Research @ Columbia. Credit: Columbia University.

“We have found absolutely nothing; the mice are very happy—and very cute as well,” David Brenner, the director of Columbia’s Center for Radiological Research, told AFP.

To be fully validated, the lamps would also have to be tested on humans. Such trials are already underway but they’re yet to be completed. For now, the preliminary results recorded by Brenner and colleagues have been submitted to the journal Nature for peer-review.

Turn the lights on to keep the virus at bay

Brenner’s lab has been experimenting with far-UVC lamps against germs for years. Previously, they showed that such radiation could kill MRSA (methicillin-resistant S. aureus) bacteria, a common culprit for surgery-associated infections, without harming human or mouse skin. They also showed that the radiation kills influenza viruses responsible for the flu.

The researchers envision a future where overhead, low-level far-UVC lighting in public locations is the new norm, limiting the airborne transmission and spread of microbial disease.

Wide-scale deployment of such lamps might not only curb the spread of the coronavirus but might also avert other pandemics in the future, as well as curtail seasonal influenza, which kills hundreds of thousands of people around the world yearly.

Indeed, Brenner has lost sleep during this crisis knowing that his work might have saved countless lives.

“I spend nights thinking—if this far-UVC project had started one or two years earlier, maybe we could have prevented the COVID-19 crisis,” he said.

“Not completely, but maybe we could have prevented it being a pandemic.”

According to Brenner, 222-nanometer lamps sell for $500 to $800. Their production is being stepped up as we speak as local authorities and companies are driving exponential growth in demand.

Tags: coronavirusCOVID-19far-UVC lightUVC

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Diseases

That 2022 Hepatitis Outbreak in Kids? It Was Apparently COVID

byMihai Andrei
1 month ago
Genetics

Finally, mRNA vaccines against cancer are starting to become a reality

byMihai Andrei
2 months ago
Diseases

FLiRT and FLuQE, the new COVID variants making the rounds

byMihai Andrei
10 months ago
Diseases

Moderna’s flu + Covid jab produces “higher immune response” than two separate shots

byMihai Andrei
11 months ago

Recent news

The Worm That Outsourced Locomotion to Its (Many) Butts

May 16, 2025

The unusual world of Roman Collegia — or how to start a company in Ancient Rome

May 16, 2025
Merton College, University of Oxford. Located in Oxford, Oxfordshire, England, UK. Original public domain image from Wikimedia Commons

For over 500 years, Oxford graduates pledged to hate Henry Symeonis. So, who is he?

May 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.