ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Features → Natural Sciences → Geology and Paleontology → Rocks and Minerals

Pumice: the floaty, foamy, fragile stone and its uses

Its name shares a root with the Latin word 'spumam' ('foam').

Alexandru MicubyAlexandru Micu
January 21, 2020 - Updated on May 6, 2023
in Rocks and Minerals
A A
Share on FacebookShare on TwitterSubmit to Reddit

Often found in cosmetics shops and beauty tip articles, this funnily-named rock has a very violent origin.

Image credits Kai Schreiber / Flickr.

Pumice is a lightly colored rock with a very foamy structure. It’s so porous, in fact, that most specimens can float on water (until they eventually become waterlogged and sink). The secret to its structure lies in the birth of pumice: violent volcanic eruptions.

Out with a bang!

Some volcanoes pop off quite violently. It happens to those whose magma is very thick, viscous, and has a high content of volatiles (mostly water and some carbon dioxide). During such an explosive eruption, highly-pressurized magma inside the volcano is ejected to the surface or underwater. Here, it rapidly cools and depressurizes. The whole process is a lot like throwing a mind in a bottle of coke, and at this stage, the lava looks a lot like the foam. The volatiles inside it bubble up as the lava cools and hardens, creating pumice.

So you can think of pumice as being frozen foam du lava. Its very name shares a root with the Latin word ‘spumam’ (‘foam’).

Pumice stone is usually created by underwater volcanoes. Particularly large eruptions can spawn whole islands or rafts of the stuff, but even humbler events can generate enough material to threaten cargo ships. Under certain conditions it can also form in subaerial (i.e. not-underwater) settings. If the source magma has a high level of volatile materials, a finer-grained variety known as pumicite can form instead. Less viscous magmas, in which gases can form bubbles more readily, create denser (and non-floaty) scoria. However, if there’s no eruption, there won’t be any pumice — it’s an extrusive ‘igneous’ mineraloid, so all deposits are centered around areas of current or past volcanic activity.

Scoria.
Image credits Jon Zander / Wikimedia.

However, if there’s no eruption, there won’t be any pumice — it’s an extrusive ‘igneous’ mineraloid — so all deposits are centered around areas of current or past volcanic activity.

Pumice stone isn’t exactly a rock in the strictest geological sense of the word because it has no internal crystalline structure. It cools too quickly for its atoms to arrange themselves the way they’d like to, so it has an overall amorphous (disorganized), glass-like structure. It can contain crystals, but these will be embedded in the amorphous matrix of the pumice — its exact make-up depends on the nature of its source magma. Instead, pumice is considered to be a mineraloid or a type of volcanic glass.

RelatedPosts

British archeologists uncover 5,000-year-old stone drum in the grave of three children
GeoPicture of the Week: Kutkhiny Baty, The Weird Valley
Stone-age humans mostly ate meat, then ran out of big animals
How to build Beijng’s Forbidden City with 100-tonne stone blocks tens of miles away

So let’s see what it’s good for.

Cosmetics

Pumice soap.
Image Patrick Reijnders / Flickr.

It’s probably best-known for its cosmetic uses. Glass is quite hard, and volcanic glass isn’t any different, so it’s a very good abrasive.

The simplest way to employ a piece of raw pumice stone is to soften an area of calloused skin with warm water and then gently rub the stone on it to scrape it off. In our gentler, modern times, powdered pumice stone is often added to soaps or body gels to improve their cleaning power, or in creams and beauty products meant to exfoliate the skin. It’s a completely natural, generally chemically-inert, and has a neutral PH; it’s also more eco-friendly than synthetic alternatives such as plastic microbeads, making it quite popular in the public eye.

Cleaning, abrasives

Household cleaning products like scouring pastes and powders can also include pumice, which helps them better scrape off hardened, encrusted nastiness.

Industrial settings rely on pumice as mild abrasives in tasks where a particular surface needs scrubbing with a gentle touch. Pumice and its powders see use in glass polishing, the cleaning and texturing of electronic circuit boards, the cleaning of lithographic plates, the removal of surface oxide layers in metal surfaces meant for electroplating, the buffing of leather and fine woods, and as a tumbling agent for metal and plastic parts. The crumbly nature of pumice together with its high hardness means it can be processed without it losing effectiveness on tough surfaces.

In dentistry

Because it’s mildly abrasive and non-reactive, pumice powder is mixed into many whitening toothpastes and teeth polish products. This tradition runs back in excess of 4,000 years, with ancient Egyptians first employing the mineraloid in this role. Today, the powder sees use in dentistry as a cleaning and polishing agent, and for its antibacterial properties. The powder is also used to prepare teeth for resin fillings.

For water filtration and retention

Zoomed-in structure of pumice.
Image via Pxfuel.

Pumice can act as a pretty good filtration method due to its porous internal structure. Some advantages of pumice as a filtration medium are its effectiveness in removing particles, low filtration bed expansion, and relatively low cost of maintenance or replacement of the pumice. Being non-toxic and inert means it doesn’t dissolve or change the taste of whatever liquid it’s filtering.

The mineraloid is also quite effective at scrubbing biological material (such as hydrogen sulfide, mercaptans, and other volatile organics) from wastewater. The quality of the pumice, its production, processing, and transport has a big impact on the quality of the final filters, however. If you do plan to build a pumice filter, make sure to wash the material thoroughly beforehand.

Mixing in pumice with soils can help enhance its natural water-filtration abilities, and this approach has been used in low-impact ecological projects to prevent contamination and runoff from entering streams, lakes, or the water table.

Pumice stone can also be used as a substrate or mixed in with soils for plants as it can store moisture when the plants are overwatered and gradually release it as the soil dries up. Furthermore, its porous nature means it improves water and gas circulation through the soil, giving plants easier access to the nutrients they need — this is especially important in compact soils with lots of clay or for hydroponics. Golf courses often use pumice stone to maintain grass cover and the shape of the landscape despite the heavy traffic they see.

As a chemical and mechanical absorbent

The structure of pumice makes it very good at absorbing liquids, kind of like a mineral sponge. With adequate processing, this ability can increase quite dramatically. As such, pumice sees use in a wide range of tasks where liquids need to be contained, ranging from kitty litter to dry petroleum/chemical absorbents.

One of the more niche uses of the mineraloid is in bomb mitigation. Explosions cause damage through high-velocity shock waves that blast objects or structures with immense mechanical energy. In order to protect yourself from the explosion, you need to either stand far away (the energy dissipates with distance) or to use it up (bodies absorb the energy as they are deformed).

As we’ve seen earlier, pumice is quite hard, and it has a very complex internal structure. Breaking and squashing this structure into a compact block takes a lot of energy, as the pores inside the stone get compacted in sequence (i.e. the blast needs to deform the pumice throughout its volume). All in all, this makes pumice a very effective blast mitigation compound, and it sees use in bomb encasements to prevent damage from accidental detonations.

Paints, rubber, concrete

Pumice aggregate concrete.
Image in the public domain.

When mixed into paints and coatings as a filler, pumice helps them better retain color over time, makes them more resistant, and increases resistance to burnishing, staining, and scrubbing.

It can also be mixed into rubber. Pumice-reinforced tires have better performance of ice and snow, as the material helps increase friction; it’s useful in rubber abrasive wheels for the same reason. You’re overwhelmingly likely to have handled pumice rubber before — pencil erasers are made of this material as the mineral helps remove graphite from paper.

Finally, pumice aggregate concrete, which has been in use since the ancient Romans, offers much the same mechanical properties of regular concrete but with up to one-third reduction in weight (depending on the composition). Pumice concretes, however, have improved thermal, acoustic, and elastic properties compared to regular concrete.

I really like pumice because, on first sight, it doesn’t look like much. It’s brittle and untastefully light for a stone. But in a way, it’s a very good allegory for scientific knowledge: if you take the time to learn about it, even something that seems bland and uninteresting can whiten your teeth, clear up chemical spills, and stunt explosions all at the same time.

Tags: pumicePumiciteScoriastone

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Anthropology

Stone-age people colonized rainforests by developing tool miniaturization

byAlexandru Micu
3 years ago
Archaeology

British archeologists uncover 5,000-year-old stone drum in the grave of three children

byAlexandru Micu
3 years ago
History

Stone-age humans mostly ate meat, then ran out of big animals

byAlexandru Micu
4 years ago
Archaeology

Ring of ancient, massive shafts found near Stonehenge

byAlexandru Micu
5 years ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.