ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Solar cells etched with Blu-ray bit patterns absorb 21.8% more energy

Tibi PuiubyTibi Puiu
November 26, 2014
in News, Renewable Energy
A A
Share on FacebookShare on TwitterSubmit to Reddit

Apart from both being shiny, it’s hard to see any connection between a Blu-ray disk and a solar panel. Northwestern University researchers thought outside the box, however, and used the disk’s tiny stamped grooves and pits to make molds for solar panels. Because of the resulting structure’s geometry, the solar cells were able to absorb 21.8% more light. Overall, the conversion efficiency was raised by 12 percent.

Bad movie? Turn it into a solar cell

solar cell blu-ray
Credit: istockphoto

As solid state drives and cloud storage have taken off, people nowadays see little use in optical storage devices like Blu-ray, let alone DVDs. Why buy a movie when you can stream it? Why store media on an optical device when a flash drive is so much more convenient? It’s a doomed market, but optical storage isn’t completely useless yet; not the Blu-rays at least. Apparently, a Blu-ray disk is an excellent medium for imprinting quasi-random nanostructures, which are essential to solar cells.

The most important parameter in a solar cell is how many photons it can absorb. To increase the number of photons that get trapped, modern solar cells employ so-called quasi-random nanostructures –  patterns that are neither too orderly nor too random. To make the molds that print these patterns onto a solar cell is prohibitively expensive, so alternatives have been sought. Some attempts have been made using Blu-ray disks, since these already have a nanostructure built in. If the disk is empty, however, then the resulting patterns are inefficient. However, when the Northerwestern researchers made a mold from a disk filled with the movie Police Story 3: Supercop, a significant surge in photon absorption was reported in Nature Communications.

Optical images of a half-patterned solar cell showing iridescent scattering due to the periodic nature of the Blu-ray pattern. Credit: Northwestern University
Optical images of a half-patterned solar cell showing iridescent scattering due to the periodic nature of the Blu-ray pattern. Credit: Northwestern University

When a Blu-ray is written, compressed binary sequences are printed with an error control modulation in the form of islands and pits (the 0 and 1) such that each element is at least two to seven digits long. Since a single digit is 75 nanometers (nm) wide, a full Blu-ray is comprised of grooves and pits ranging from 50 nm to 525 nm in size. Coincidentally, these are near optimal for photon trapping.

The disk’s surface was first delaminated to expose the bits, then a negative mold was made. A polymer active layer was pressed onto the mold and vapor deposition was then used to transfer semiconducting material onto the new cell’s surface. When tested, the Blu-ray patterned cells absorbed 21.8 percent more light than non-patterned panels. Conversion efficiency jumped by nearly 12 percent.

So, quite unexpected. Personally, I believe this is a perfect example of how old tech can still creep up and surprise us. Why re-invent the wheel, when you can use what’s already around you.

 

RelatedPosts

Photosynthetic solar cell turns carbon dioxide and sunlight into fuel
Finally, a fully transparent solar energy harvester
Popeye’s secret: spinach provides key insight that might one day lead to artificial photosynthesis
Princeton nanomesh greatly increases the efficiency of organic solar cells
Tags: blu-raysolar cell

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Green Living

Why transparent solar cells could replace windows in the near future

byRupendra Brahambhatt
2 years ago
The cells change from transparent to orange-red when heated enough. Credit: UC Berkeley.
News

‘Solar windows’ change from transparent to tinted at high temperatures, blocking the sun while generating electricity

byTibi Puiu
7 years ago
Credit: Michigan State University.
News

Transparent solar technology could provide 40% of US power if deployed across all glass surfaces

byTibi Puiu
8 years ago
Silicon solar cell with 26.3% efficiency. Credit: Kaneka Corporation.
News

Record-breaking silicon solar cell efficiency of 26.6% demonstrated by Japanese researchers, very close to the theoretical limit

byTibi Puiu
8 years ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.