Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Space

Unusual collision triggers supernova explosion in binary star system

Paula Ferreira by Paula Ferreira
October 29, 2021
in Space

When stars collapse under their own gravity, they can leave behind a neutron star or black hole — provided that the star is massive enough. In a binary star system, this can lead to some pretty wicked interactions.

Fast-moving debris from a supernova explosion triggered by a stellar collision crashes into gas thrown out earlier, and the shocks cause bright radio emission seen by the VLA. Credit: Bill Saxton, NRAO/AUI/NSF

When stars collapse under their own gravity, they can leave behind a neutron star or maybe a black hole — provided that the star is massive enough. Neutron stars and black holes are called compact objects by astrophysicists. They are extremely dense, but not necessarily extremely massive. For instance, some black holes can be less massive than stars, at 5 – 10 solar masses — while supergiants like Betelgeuse can have 19 solar masses.

Just because our Sun is a lone wolf star doesn’t mean all the other stars are alone out there. In fact, many stars, (especially massive ones with more than 8 solar masses) are in binary star systems.

A binary star is not just one star orbiting the other neatly like in the solar system models we see in school — what celestial bodies are actually orbiting is each other’s center of mass. If a star is much more massive than the other, it would be the leader of the orbital dance and pull the center of mass closer to it — just like in our case, the Earth is considerably more massive than the Moon, so the center of mass is closer to our planet.

Binaries can form in stellar nurseries, dense molecular clouds that can collapse and form stars. If one of the two is substantially more massive than the other, it can make things extra interesting. What sometimes happens is that the more massive star holding the stronger gravitational field can start accreting (stealing) gas from its companion. In the case of neutron stars, they can do that even when their companion is bigger. We also know that black holes can also munch on an orbiting star, as was reported by the Laser Interferometer Gravitational-Wave Observatory (LIGO) detection GW200105 in 2020. The other scenario (where a star would absorb its more massive partner) is hard to imagine.

Researchers detected a radio source called VT J121001+495647 from the Very Large Array Sky Survey and later looked for the same event using different telescopes, and found X-ray signals. The X-ray emission lasted 15 seconds, with 4 trillion trillion trillion joules per second, the only objects powerful enough to emit this much energy in the X-ray band are supernovae. 

The newly-discovered binary system, 480 million light-years away from Earth has two objects that were probably formed together but had very different life cycles: one of them was probably an ordinary star with regular nuclear fusion activity, like most main sequence stars, while the other is more mysterious. It could be a neutron star or a black hole, but probably, the result of a very hot fast-burning fuel life-cycle that ended in a compact object.

The reason we see a radio emission is that the big star (not the compact object munching on it) went from the normal phase to the supergiant phase. Simply put, it grew in size, (just like our sun will, at some point, grow enough to envelop Earth), and eventually, the companion was wrapped by it. A cataclysmic dance started, the denser companion messed with the core collapse of the bigger friend. Ultimately, this will probably end in one big boom, astronomers explain.

“The companion star was going to explode eventually, but this merger accelerated the process,” said Dillon Dong – leading author of the discovery.

The compact object remained inspiraling towards the star’s core, ejecting mass which formed a disk with a jet coming out of its axis – in a doughnut shape. When finally reaching the core of a titanic boom, the collapse of the star’s core forms a supernova.

This was the first time scientists found evidence of a star eating a neutron star/black hole, something only discussed theoretically until now. Hopefully, future observations will shed more light on this unusual process. The study was published in Science.

Was this helpful?
Thanks for your feedback!
Related posts:
  1. It’s so hot that Antarctica is going green, as global warming triggers moss explosion
  2. Supernova flings star out of the Milky Way – it’s the fastest moving star ever
  3. Supernova observed right after its explosion
  4. Black hole 5 times heavier than the Sun found in binary star system
  5. Scientists discover first pulsing white dwarf binary star

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW