ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

“Diamond rain” on icy planets has unexpected connection to magnetic fields

Experiments with X-ray lasers simulate space conditions.

Jordan StricklerbyJordan Strickler
January 10, 2024
in Astronomy, News, Physics, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit
Artist’s concept of diamond rain on Neptune. (Credit: Greg Stewart/SLAC National Accelerator Laboratory)

The Earth isn’t the only planet on which it rains. In fact, on other planet it rains methane, sulfuric acid, or even diamonds.

Diamond rain formation is a fascinating phenomenon that occurs on icy planets like Neptune and Uranus, and it has recently gained new understanding thanks to an international research team. New data from the powerful X-ray laser at the European X-Ray Free-Electron Laser (XFEL) Facility in Schenefeld has shed some light on complex magnetic fields.

Lasers and diamonds

Previously, scientists using X-ray lasers discovered that high pressures in the interiors of large gas planets could transform carbon compounds into diamonds. These diamonds, formed in the upper layers of the planets, were thought to sink deeper into their interiors, resembling a rain of precious stones. However, the latest experiment at the European XFEL seems to suggest a different mechanism.

The results, published in Nature Astronomy, indicate that diamond formation from carbon compounds starts at lower pressures and temperatures than previously assumed. This implies that diamond rain begins at shallower depths on gas giants like Neptune and Uranus.

The finding is more than just a curiosity or a factoid. It could have important implications, as it suggests diamond rain could have a more significant impact on forming a planet’s magnetic fields than previously thought.

“‘Diamond rain’ on icy planets presents us with an intriguing puzzle to solve,” said SLAC scientist Mungo Frost, who led the research. “It provides an internal source of heating and transports carbon deeper into the planet, which could have a significant impact on their properties and composition. It might kick off movements within the conductive ices found on these planets, influencing the generation of their magnetic fields.”

A lot of places could have diamond rain

Another intriguing aspect of this research is the possibility of diamond rain on smaller gas planets, known as “mini-Neptunes.” These planets are not present in our Solar System but are common as exoplanets in the galaxy. The discovery that diamond rain could occur on these smaller planets broadens our understanding of planetary phenomena in the universe.

RelatedPosts

No Content Available

To simulate the conditions inside these icy giants, the research team used a plastic film made from polystyrene as a carbon source. Under extreme pressure, this material forms diamonds, mimicking the process believed to occur inside the planets. This experiment generated high pressures and temperatures exceeding 3,992 degrees Fahrenheit (2,200 degrees Celsius), akin to those inside the gas giants.

The experiment’s setup involved diamond anvil cells, which function like mini vises, squeezing the sample between two diamonds. Using the X-ray pulses from the European XFEL, the researchers could observe the formation of diamonds in the cell, providing valuable insights into this process’s timing, conditions, and sequence.

Next, the researchers are planning similar experiments that will bring them closer to understanding exactly how diamond rain forms on and impacts the properties of other planets.

“This groundbreaking discovery not only deepens our knowledge of our local icy planets, but also holds implications for understanding similar processes in exoplanets beyond our solar system,” said SLAC’s High Energy Density Director Siegfried Glenzer.

Tags: Diamond anvil celldiamond rainEuropean X-Ray Free-Electron LaserMungo FrostSLAC

ShareTweetShare
Jordan Strickler

Jordan Strickler

A space nerd and self-described grammar freak (all his Twitter posts are complete sentences), he loves learning about the unknown and figures that if he isn’t smart enough to send satellites to space, he can at least write about it. Twitter: @JordanS1981

Related Posts

No Content Available

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.