ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

We finally know how hummingbirds fly through gaps that are too small for their wings

Study brings new light to their amazing abilities.

Fermin KoopbyFermin Koop
November 15, 2023
in Animals, Environment, News, Science
A A
Edited and reviewed by Zoe Gordon
Share on FacebookShare on TwitterSubmit to Reddit

When going through dense and leafy forests, most birds bend their wings at the ‘wrist’ or ‘elbow’ joint and barrel through. However, this isn’t an option for hummingbirds, who have to use different strategies to transit the gaps between leaves and branches. This remarkable solution hadn’t been effectively studied before as hummers move too fast for the human eye to see.

Anna's hummingbird passes through gap
An Anna’s Hummbingbird (Calypte anna) navigates an aperture too small for its wingspan by sliding through while flapping its wings. Image credits: Marc Badger / UC Berkeley.

Now, researchers from the University of California, Berkeley, have finally found out how Anna’s hummingbirds (Calypte anna) slip through small openings despite being unable to fold their wings in. In their study, they found that the birds use two unique strategies that allow them to penetrate gaps that are barely half a wingspan wide.

In spaces with narrow gaps that cannot accommodate their wingspan, they maneuver sideways through the opening, continuously flapping their wings to maintain their altitude. For smaller openings, or when the birds are familiar with what lies beyond, they fold their wings and smoothly glide through, resuming flapping when it’s clear.

“For us, going into the experiments, the tuck and glide would have been the default. How else could they get through?” Robert Dudley, one of the study authors, said in a news release. “This concept of sideways motion with a total mix-up of the wing kinematics is quite amazing — it’s a novel and unexpected method of aperture transit.”

Obstacle course

To discover how hummingbirds — in this case, four local Anna’s hummingbirds (Calypte anna) — slip through tiny openings, the researchers set up a two-sided flight arena, with a 16-square-centimeter gap in the partition separating the two sides. Hummingbirds have a wingspan of about 12 cm, so the experiment was a challenge for them.

The researchers then came up with another idea. They placed flower-shaped feeders containing a sip of sugar solution on both sides of the partition, only remotely refilling the feeders after the bird had visited the opposite feeder. This encouraged the birds to continually flit between the two feeders through the aperture, the team found.

They then altered the aperture’s shape, from oval to circular, with variations in height, width, and diameter ranging from 12 cm to 6 cm. They used high-speed cameras to record the birds’ movements. Marc Badger, study author, developed a computer program to monitor the position of each bird’s bill and wing tips as they navigated through the aperture.

As the birds neared the aperture, they frequently paused in mid-air to assess it. Subsequently, they maneuvered through sideways, extending one wing forward while sweeping the other backward. Fluttering their wings to provide lift, they passed through the aperture. Then, they rotated their wings forward to resume their journey.

RelatedPosts

Scientists Unearth a ‘Missing Link’ in Bird Brain Evolution in 80-Million-Year-Old Fossil
Some seagulls will steal your food unless you stare them in the eyes
Animals can experience post-traumatic stress disorder from exposure to predators
Getting across: how snails travel through birds’ bellies

Alternatively, the birds retracted their wings, securing them against their bodies, and swiftly passed through the aperture — headfirst, resembling a bullet. Following the passage, they extended their wings forward again and resumed flapping. They seem to use this method when they get more familiarized with the system, Dudley argued.

Only 8% of the bids clipped their wings as they passed through the partition, although one had a collision. Even then, the bird recovered quickly. “The ability to pick among several obstacle negotiation strategies can allow animals to reliably squeeze through tight gaps and recover from mistakes,” Badger said in a media release.

The study was published in the Journal of Experimental Biology.

Tags: birdhummingbird

ShareTweetShare
Fermin Koop

Fermin Koop

Fermin Koop is a reporter from Buenos Aires, Argentina. He holds an MSc from Reading University (UK) on Environment and Development and is specialized in environment and climate change news.

Related Posts

Geology

Scientists Analyzed a Dinosaur’s Voice Box. They Found a Chirp, Not a Roar

byTudor Tarita
2 weeks ago
Animals

These Cockatoos Prepare Their Food by Dunking it Into Water

byRupendra Brahambhatt
8 months ago
News

Scientists Unearth a ‘Missing Link’ in Bird Brain Evolution in 80-Million-Year-Old Fossil

byTibi Puiu
9 months ago
Animals

Half male, half female bird stuns ornithologists

byTibi Puiu
1 year ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.