Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science

The Betelgeuse false alarm and Red Giants dust hypothesis

Betelgeuse didn't go boom, it just coughed a bit.

Paula Ferreira by Paula Ferreira
January 5, 2021
in Science
Illustration of dust ejection from Betelgeuse. First two panels show the beginning of the outburst, last two panels simulate two points of view of the cooled mass. Credits: NASA, ESA, and E. Wheatley (STScI)

Betelgeuse is a red giant star with a radius of 617,100,000 km — a whopping 887 times the Sun’s radius. To have an idea of the size, Orion’s star is so big it could envelop Jupiter’s entire orbit (depicted in the image below).

Betelgeuse size comparison. Credits: ALMA (ESO/NAOJ/NRAO)/E. O’Gorman/P. Kervell.

In December 2019, astronomers noticed a sudden drop in the star’s brightness. The observations continued until it reached a minimum in February 2020. The first hypothesis that came to everyone’s mind was that the star was in its final days and would explode to a Type II Supernova, which seemed plausible due to its size and characteristics.

Betelgeuse is a massive and very hot star, so it burns its fuel faster than smaller stars. As a result, red giants like Betelgeuse have shorter lives (Betelgeuse is only 10 million years old while our Sun is 450 times older) and it is estimated that it has about 100,000 years left.

When a star this size explodes into a supernova, its brightness reaches a maximum and then stabilizes as it decreases in brightness. If Betelgeuse were to indeed turn into a supernova, we’d see this in the night sky as something having 10% of the Moon’s brightness — but at its peak, the brightness will even outshine the moon in the first days of high luminosity.

However, scientists have suggested that dust in front of our point of view made it appear less bright. The Hubble space telescope observations of the sudden dimming suggested that mass ejection from the star created a bubble of gas that quickly cooled down and the dust became what we can imagine as a shadow in our line of sight, which made it appear less luminous.

After the (metaphorical) dust had settled, Betelgeuse still did not turn into a supernova. So what did it actually do?

What is the dust all about?

Another group decided to check using a submillimeter telescope. Submillimeter astronomy observes a specific part of the electromagnetic spectrum: between far-infrared and microwave wavelengths.

These parts of the spectrum help researchers detect the presence of water vapor, as well as molecular oxygen and other molecules. Observations with submillimeter telescopes are ideal for detecting the ingredients which form stars and planets.

Evolution of stars. Betelgeuse fits the third line evolution. Credits: NASA/CXC/M.Weiss.

Whenever a submillimeter telescope points to nebular dust, the image is very bright due to the dust itself. The James Clerk Maxwell Telescope didn’t have a significant signal from the ‘dust’ ejected by Betelgeuse, which essentially invalidated the dust hypothesis. So it wasn’t a supernova event and there wasn’t any dust — so what could have caused Betelgeuse’s loss of luminosity?

Another giant goes dark

A more recent study looked at another giant star, finding that this type of mass ejection event may be common for massive stars than we thought, and the missing piece is a gas bubble around the star. These gas bubbles which are ejected may be good candidates to understand more about the building blocks of the formation of future stars.

VY Canis Majoris (VY CMa) is a hypergiant located in the Canis Major constellation, almost twice as large as Betelgeuse. Data collected with the Hubble telescope showed that a similar variability of brightness from Betelgeuse — in other words, what happened with VY CMa likely also happened to Betelgeuse.

This research compared the recent dimming of the VY CMa with historical data from the 1880-1890 and 1920-1940 periods. The Canis Major’s star has a longer period of alternating from maximum to minimum brightness. This could be related to the size of the object: a larger star requires a longer period of dust ejection, consequently, more dust escapes it.

It was a disappointment for many astronomers who were hoping to see something spectacular — but instead, more questions than answers seem to have emerged about the behavior of these supernovae. From now on, we wait for further research and observation to better understand red giants mass ejections.

Was this helpful?
Thanks for your feedback!
Related posts:
  1. “Apocalyptic” Red Sun phenomenon in UK triggered by Hurricane Ophelia, forest fires, and dust from the Sahara
  2. Martian dust devil seen skipping across the red planet
  3. No people, Betelgeuse is not going supernova
  4. Betelgeuse is getting dimmer — but will it explode soon?
  5. Astronomers Solve the Mystery of Betelgeuse’s ‘Great Dimming’
Tags: astronomySpace

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW