ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Manhattan could halve its number of cars and people would still get where they need to go – if they rode smart

More silicon, less asphalt, says an MIT researcher.

Tibi PuiubyTibi Puiu
May 23, 2018
in Science
A A
Share on FacebookShare on TwitterSubmit to Reddit
Credit: Pixabay.
Credit: Pixabay.

The advent of ride-sharing apps has been hailed as an inflection point in transportation. Companies like Uber and Lyft are severely disrupting transportation and will continue to transform the way people ride from A to B once self-driving cars become more common.

One of the most appealing things about ride sharing, from an environmental perspective, is that it makes car ownership redundant in many cases. As private car ownership is expected to shift toward shared mobility services, there should be a significant reduction of traffic in urban areas and greenhouse gas emissions. This is happening already, as evidenced by a previous study which focused on Austin, Texas, a city where Uber and Lyft were temporarily forced to cease operations due to a local ordinance. According to the study, 41% of those surveyed turned to their own vehicle to fill the void left by apps ceasing operations and 9% actually bought an additional car for this purpose.

However, in order for mobility services to operate at maximum efficiency, we require computationally efficient algorithms that can match people with on-demand vehicles. The problem is that this is a lot harder than it sounds. Even using today’s powerful computer, plotting the optimal routes with complex variables can be a daunting task, which is why good solutions for fleet management have been severely constrained in size, keeping them to a few tens of vehicles.

This is obviously not an option when dealing with big cities. New Yorkers, for instance, are served by approximately 13,500 taxis which make around 500,000 trips daily.

Researchers at MIT’s Senseable City Lab found a workaround, however. They recently unveiled a computationally efficient solution to this problem, which they dub the “minimum fleet problem.”

“We started looking into this problem motivated by the increasing trends toward shared mobility, which will likely become even stronger with the transition to autonomous vehicles,” says Ratti, who is also a professor of the practice in MIT’s Department of Urban Studies and Planning. “If demand for mobility is served by fleets of shared vehicles, a fundamental question is: How many vehicles do we need to serve the mobility needs of, say, a city such as New York?”

The MIT team wrote their algorithm by using variations of the “traveling salesman problem,” which aims to minimize the total distance traveled by a salesman who must visit a given number of destinations in a city.  In February 2018, the Washington Post reported that it would take at least 1,000 years for a computer to find an optimal route to only 22 points. However, the MIT researchers used a different approach —  a network-based model dubbed “vehicle sharing network”, which was previously used in 2014 to find the best way to share rides in a large city.

The algorithm represents the shareability of the taxi fleet as a graph — a mathematical structure amounting to a set of objects in which some pairs of the objects are, in some sense, “related.” Each trip is represented by a node, while the edges of the graph represent the fact that two trips can be served by a single vehicle.

RelatedPosts

Earth’s inner core may actually be mushy
Heavy video gaming in teens could point to depression, if it’s always playing alone
Can’t hug other people? Hug a tree, Iceland’s forestry service advises
Deep Sea Discoveries

In order to test their solution, Ratti and colleagues ran the algorithm using a data set of 150 million taxi trips taken in New York over the course of one year. The researchers learned that if their method was implemented, the fleet size could be reduced by 30% while still achieving the same service levels. An even greater reduction of vehicles would be achieved if the solution involved individuals sharing a journey, which the algorithm doesn’t take into account. Instead, the model simply reorganizes the whole taxi dispatching operation, which is enough to vastly optimize travel time. As more and more cars become networked and come with autonomous functions, this sort of model could become even more efficient and appealing.

“If we look at Manhattan as a whole, we could theoretically satisfy its mobility demand with approximately 140,000 vehicles — around half of today’s number,” he says. “This shows that tomorrow’s urban problems regarding mobility can be tackled not necessarily with more physical infrastructure but with more intelligence, or in other words: with more silicon and less asphalt.”

The findings appeared in the journal Nature. 

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Culture & Society

What’s Seasonal Body Image Dissatisfaction and How Not to Fall into Its Trap

byAlexandra Gerea
1 day ago
Mind & Brain

Why a 20-Minute Nap Could Be Key to Unlocking ‘Eureka!’ Moments Like Salvador Dalí

byTibi Puiu
1 day ago
Anthropology

The world’s oldest boomerang is even older than we thought, but it’s not Australian

byMihai Andrei
2 days ago
Future

Swarms of tiny robots could go up your nose, melt the mucus and clean your sinuses

byMihai Andrei
2 days ago

Recent news

What’s Seasonal Body Image Dissatisfaction and How Not to Fall into Its Trap

June 28, 2025

Why a 20-Minute Nap Could Be Key to Unlocking ‘Eureka!’ Moments Like Salvador Dalí

June 28, 2025

The world’s oldest boomerang is even older than we thought, but it’s not Australian

June 27, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.