ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Engineers study the in-depth structure of wings to make better adhesive materials

"We believe that these structures could serve as inspiration for an interlocking one-directional adhesive or a material with directionally tailored permeability," the team said.

Alexandru MicubyAlexandru Micu
January 18, 2019 - Updated on April 22, 2023
in Animals, Materials, News, Physics, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Bird feathers may be the key to new adhesives and advanced aerospace materials.

Barbules.
A, E, and F show birth feathers under normal magnification and under the microscope. B shows a model of the team’s 3D-printed structures and its behavior during a wing’s upstroke (C) and downstroke (D).
Image credits T. Sullivan, M. Meyers, E. Arzt, 2019, Science Advances.

If you’ve ever toyed around with a feather you’ll know that they somehow pull themselves back together if you take their barbs apart. The structures that underpin this behavior may point the way to novel adhesives and aerospace materials, say researchers from the University of California San Diego.

On the wings of progress

Tarah Sullivan, who earned a Ph.D. in materials science from the Jacobs School of Engineering at UC San Diego, led the research efforts. Her team is the first in roughly two decades to take an in-depth look at the structure of bird feathers without focusing on a particular species.

Based on their observations, the team 3D-printed structures that mimic the vanes, barbs, and barbules of feathers to better understand their surprising properties. This step helped them better see how feathers knit themselves back together after you pull them apart, for example, or how their undersides can capture air for lift while the top of the feather can block air to help with the landing.

Sullivan found that barbules — smaller, hook-like structures that connect feather barbs — are spaced within 8 to 16 micrometers of each other. This distance remained stable throughout bird species, from the hummingbird to the condor, suggesting that it is an important property for flight.

“The first time I saw feather barbules under the microscope I was in awe of their design: intricate, beautiful and functional,” she said. “As we studied feathers across many species it was amazing to find that despite the enormous differences in size of birds, barbules spacing was constant.”

The vane-barb-barbule structure seen in feathers could lead to the development of new materials. Adhesives — similar to Velcro — and materials intended for the aerospace industry are the team’s main areas of interest. Sullivan has already built a prototype adhesive material which she plans on discussing in a follow-up paper.

“We believe that these structures could serve as inspiration for an interlocking one-directional adhesive or a material with directionally tailored permeability,” she said.

Sullivan’s team also took a look at the bones in bird wings. They found that the humerus (the longest bone in the wing) is disproportionately long. This is likely intended to give it enough strength to take the weight of a bird’s body in flight, they say. Because bone strength is limited, and because the humerus carries the brunt of the load during flight, scaling it up proportionately to the rest of the wing just doesn’t cut it. Instead, the bone needs to grow much faster and to a greater relative size to withstand the forces it’s subjected to during flight.

RelatedPosts

Europe has 421 million fewer birds than 30 years ago
Firehawks: In Australia, birds of prey are intentionally setting the forests on fire
Watch How Many Flights Fly Through Europe on a Typical Summer Day
Wildfires can change the songs birds sing

This process by which certain body parts grow at different rates than the body as a whole is known as allometry. Our brains, for example, are allometric, as they grow much faster than the rest of our bodies when we’re young. Our hearts are isometric, as they grow proportionately to the rest of the body.

“Professor Eduard Arzt, our co-author from Saarland University in Germany, is an amateur pilot and became fascinated by the ‘bird wing’ problem. Together, we started doing allometric analyses on them and result is fascinating,” said Meyers.

“This shows that the synergy of scientists from different backgrounds can produce wonderful new understanding.”

The paper “Scaling of bird wings and feathers for efficient flight” has been published in the journal Science Advances.

Tags: AdhesivebirdfeatherflightWing

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Future

Pterosaur Bones Could Inspire Lighter, Stronger Planes

byTibi Puiu
3 months ago
Animals

These Cockatoos Prepare Their Food by Dunking it Into Water

byRupendra Brahambhatt
5 months ago
News

Scientists Unearth a ‘Missing Link’ in Bird Brain Evolution in 80-Million-Year-Old Fossil

byTibi Puiu
6 months ago
Octopus-inspired adhesive reaching out to grab a rock.
Biology

New Octopus-Inspired Adhesive Grips Slippery Objects With Ease Even Underwater

byRupendra Brahambhatt
6 months ago

Recent news

The Worm That Outsourced Locomotion to Its (Many) Butts

May 16, 2025

The unusual world of Roman Collegia — or how to start a company in Ancient Rome

May 16, 2025
Merton College, University of Oxford. Located in Oxford, Oxfordshire, England, UK. Original public domain image from Wikimedia Commons

For over 500 years, Oxford graduates pledged to hate Henry Symeonis. So, who is he?

May 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.