ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

This is what thunder looks like (kind of)

What does lightning sound like? Thunder. Well, what does thunder look like then? It's no trick question. Like all acoustic waves, thunder can also be visualized and Maher Dayeh from the Southwest Research Institute in San Antonio was the first to turn a thunderclap into an image. His findings were shown at a meeting of the American Geophysical Union.

Tibi PuiubyTibi Puiu
May 6, 2015
in News, Physics, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

What does lightning sound like? Thunder. Well, what does thunder look like then? It’s no trick question. Like all acoustic waves, thunder can also be visualized and Maher Dayeh from the Southwest Research Institute in San Antonio was the first to turn a thunderclap into an image. His findings were shown at a meeting of the American Geophysical Union.

You're still looking at lightning. Thunder image below. Credit: Flickr Matjs
You’re still looking at lightning. Thunder image below. Credit: Flickr Matjs

Every day, some four million lightning strikes hit the surface of the planet. Despite this, how lightning, and subsequently thunder, is formed is not completely understood at a physical level. We know one thing for sure: it comes from clouds (dust, water and ice). Ice inside the cloud rubs against each other becoming electrically polarized or charged (the exact mechanism is a bit fuzzy, which is why the whole thing is debatable). The lighter ice will move upwards, while the heavier ice will stay below separating the negative and positive charges. Just like the cloud, because there’s a lot of charge hovering around, the air below the clouds also become ionized. In turn, the ionized air charges air particle further below in a cascading effect until it eventually reaches the ground. This happens very quickly, and the sections of ionized air look very much like electrical sparks or the static electricity released when you rub your sweater against a balloon. The  ground is very conductive compared to air, and will give up a large amount of electric charge into this completed circuit (between the ground and the cloud) that causes a lot of charge to flow from the ground upwards to the cloud (this is called the return stroke and is basically what you see as lightning). This ionizes the air completely between the ground and the cloud, and this is the part you can see for miles around.

Left: long exposure photo of lightning event with downstream in green, and return stroke in purple. Right: audio signature for each return stroke. Image: Nature
Left: long exposure photo of lightning event with downstream in green, and return stroke in purple. Right: audio signature for each return stroke. Image: Nature

 

As for thunder, because the ionization of air described above happens so quickly over a large area, it causes air to move (acoustic pressure) just like a sonic boom or explosion. Now, this sound has been recorded and visualized using processing algorithms by researchers at Southwest Research Institute in Antonio, Texas. Dayeh and team first went to a military installation in Florida, then installed a launch system which would shoot a rocket with a long copper wire trailing behind. The rocket was fired into a thundercloud. Then, it was only a matter of waiting for the rocket to trigger the lightning strike and profit. The lightning traveled down the wire and eventually hit the launch platform which was surrounded 15 microphones spaced 1 meter apart. This helped build an acoustic map, which looks like a contemporary painting. In fact, Dayeh and crew were so stoked by the results they thought they had done something wrong.

“The initial constructed images looked like a colourful piece of modern art that you could hang over your fireplace. But you couldn’t see the detailed sound signature of lightning in the acoustic data,” Dr Dayeh said.

Top: lightning. Bottom: acoustic map of the thunder. Image: Nature
Top: lightning. Bottom: acoustic map of the thunder. Image: Nature

The map also provided a few insights into thunder formation, like the fact that thunderclap depends on the peak electric current flowing through the lightning bolt. [source: Nature]

RelatedPosts

Astronomers say exploding stars might have forced our ancestors to walk upright
Massive 700-km ‘megaflash’ stretching from Argentina to Brazil is longest lightning bolt on record
The Longest Lightning Flash Ever Recorded Stretched 829 Kilometers From Texas to Missouri
Scientists observe 200-mile long lightning bolt – 10 times longer than we thought possible
Tags: lightningthunder

Share4TweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Climate

The Longest Lightning Flash Ever Recorded Stretched 829 Kilometers From Texas to Missouri

byTudor Tarita
1 month ago
News

NASA Astronaut Snaps Rare Sprite Flash From Space and It’s Blowing Minds

byTibi Puiu
2 months ago
Chemistry

Peeling Tape Creates Microlightning Strong Enough To Power Chemistry

byTibi Puiu
2 months ago
News

Two Lightning Bolts Collided Over a Japanese Tower and Triggered a Microburst of Nuclear-Level Radiation

byTudor Tarita
3 months ago

Recent news

Pluto’s Moons and Everything You Didn’t Know You Want to Know About Them

September 11, 2025 - Updated on September 12, 2025

Japan Is Starting to Use Robots in 7-Eleven Shops to Compensate for the Massive Shortage of Workers

September 11, 2025

This Bizarre Martian Rock Formation Is Our Strongest Evidence Yet for Ancient Life on Mars

September 11, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.