ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

The Tonga volcano sent enough water to the atmosphere to temporarily warm the planet

The researchers said they’ve never seen anything like this.

Fermin KoopbyFermin Koop
August 5, 2022
in Geology, News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

The eruption of the undersea Hunga Tonga-Hunga Ha’apai volcano from earlier this year sent so much water vapor into the atmosphere that it’s likely to temporarily warm the Earth’s surface, according to observations by a NASA satellite. This temporary blip won’t significantly impact our planet’s climate, but it shows how massive the eruption truly was.

This looping video shows an umbrella cloud generated by the underwater eruption of the Hunga Tonga-Hunga Ha’apai volcano. Image credit: NASA.

The volcano erupted on January 15, about 40 miles (65 kilometers) north of Tonga’s capital (over 4000 km east of the coast of Australia), creating a tsunami and a sonic boom that rippled around the world twice. The eruption sent a plume of water vapor into the stratosphere, a layer of the atmosphere, with enough water to fill 58,000 Olympic-sized swimming pools, according to NASA.

The phenomenon was massive that it was detected by the Microwave Limb Sounder (MLS) instrument on NASA’s Aura satellite, which measures ozone, water vapor, and other atmospheric gases. The scientists estimate that the eruption sent 146 teragrams of water to the stratosphere. This is equal to about 10% of the water already present in the layer of the atmosphere.

“We’ve never seen anything like it,” Luis Millán, an atmospheric scientist at NASA’s Jet Propulsion Laboratory in Southern California, said in a statement. Millán led a research looking at the amount of water vapor sent by the volcano. “We had to carefully inspect all the measurements in the plume to make sure they were trustworthy,” he added.

A massive eruption

Volcanic eruptions rarely release that much water. NASA started taking measurements 18 years ago, and since then only two other eruptions (the 2008 Kasatochi event in Alaska and the 2015 Calbuco eruption in Chile) sent significant amounts of water vapor. But those don’t come close to the Tonga event, and the water vapor dissipated quickly.

In general, water makes volcano eruptions more explosive, so you’d expect an explosive event like Tonga to have a lot of water, but even so, it was surprising to see just how much water the eruption spewed into the atmosphere. In this case, it wasn’t just the water from the volcano itself that researchers detected, but water from the ocean around the volcano that was vaporized.

It usually takes between two and three years for the aerosols from volcanos to drop from the stratosphere. But the water from the Tonga eruption could take between five and ten years to dissipate, according to the researchers. Given that timeframe and the amount of water, it would be the first recorded volcanic eruption to impact climate through surface warming.

The planet has already warmed by 1.1 degrees Celsius since the start of the industrial revolution and is set to keep warming. Fortunately, the effect of the water vapor from the volcano is expected to be small and temporary, and shouldn’t accentuate our climate problems.

RelatedPosts

Fishing vessels level sea bottom – signs of a new dawning geological era
Drone footage on New Year Eve is the prettiest thing I’ve seen today
Why smoking weed gives you the munchies — blame your hormones
How to prevent dementia, according to new WHO guidelines

The authors of the new study also explain that the main reason for the massive amount of water vapor was the depth of the volcano’s caldera: 150 meters (490 feet) below the surface. If it was too shallow, the amount of seawater heated by the magma wouldn’t have matched what reached the stratosphere, and if it was too deep, the depth of the ocean would have limited the eruption.

The MLS instrument was used to detect water vapor because of its capacity to observe natural microwave signals released from the atmosphere. By measuring these signals, the MLS can see through obstacles like ash clouds that can blind other instruments and focus on the water vapor. For Millán, it was “the only instrument” dense enough coverage to capture the water vapor plume, and it’s a good tool to help us understand extreme events like the Tonga eruption.

The study was published in the journal Geophysical Research Letters.

ShareTweetShare
Fermin Koop

Fermin Koop

Fermin Koop is a reporter from Buenos Aires, Argentina. He holds an MSc from Reading University (UK) on Environment and Development and is specialized in environment and climate change news.

Related Posts

Biology

Scientists Made a Battery Powered by Probiotics That’s Completely Biodegradable

byTibi Puiu
24 minutes ago
Animals

Scientists stunned to observe that humpback whales might be trying to talk to us

byMihai Andrei
60 minutes ago
News

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

byTibi Puiu
2 hours ago
News

Lawyers are already citing fake, AI-generated cases and it’s becoming a problem

byMihai Andrei
5 hours ago

Recent news

Scientists Made a Battery Powered by Probiotics That’s Completely Biodegradable

June 10, 2025

Scientists stunned to observe that humpback whales might be trying to talk to us

June 10, 2025

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

June 10, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.