ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Life went multi-cellular to spread kids around more easily, new research suggests

Do it for the kids!

Alexandru MicubyAlexandru Micu
June 26, 2018 - Updated on September 14, 2023
in Biology, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Life on Earth may have first grown to macroscopic sizes not to compete for food, but to spread their genes far and wide.

Mistaken Point
Ediacaran fossils at Mistaken Point, Newfoundland.
Image credits Emily Mitchell.

Complex life is all about making babies — and spreading them far, according to new research led by the University of Cambridge. In a newly-published paper, they report that the most successful complex species living in the ocean over half a billion years ago were the ones who could spread their offspring the farthest, thus colonizing more land.

Wildest oats

Prior to what geologists refer to as the Ediacaran period (between 635 and 541 million years ago), life on Earth was content to stay microscopic. During the Ediacaran, however, we see the first complex (multicellular) organisms. Some of them, such as the rangeomorphs, could grow up to two meters tall.

We don’t know a whole lot about rangeomorphs. We don’t really know if they were plants or animals, for that matter. What we do know is that they look a lot like ferns and that they’re among the first complex life forms to evolve on the planet — although that’s hard to confirm. Like all other organisms hailing from the Ediacaran, they had no mouths, don’t seem to have had any organs, and lack any obvious means of locomotion — so they were likely filter-feeders, like modern-day clams for example.

One interesting pattern that emerges from the fossil record is that these Ediacaran organisms tended to become more diverse over time — and eventually developed stem-like structures to keep them upright. It was these stems that prompted the research. Plants today also sport stems, and most use height to outcompete their neighbors for resources such as light. But we don’t know if rangeomorph stems served as a means to one-up competitors — although previous research has suggested that their increase in size was driven by competition for nutrients at different water depths.

Ediacaran life.
Artist’s reconstruction of Ediacaran life.
Image credits Ryan Somma / Flikr.

“We wanted to know whether there were similar drivers for organisms during the Ediacaran period,” said Dr Emily Mitchell of Cambridge’s Department of Earth Sciences, the paper’s lead author. “Did life on Earth get big as a result of competition?”

The oceans at the time were very rich in nutrients, so there wasn’t much competition for resources, and predators did not yet exist. So there must have been another reason why life forms got so big during this period.”

Mitchell and co-author Dr. Charlotte Kenchington, from Memorial University of Newfoundland in Canada, worked with fossils retrieved from Mistaken Point, in south-eastern Newfoundland. This area is one of the richest sites of Ediacaran fossils in the world.

Since Ediacaran organisms were immobile, they were preserved where they lived. As such, the team could analyze entire populations from the fossils. Using spatial analysis techniques, the duo found that there was no correlation between individual size and competition for food. In other words, the rangeomorphs did not tier — they didn’t occupy different parts of the water column to avoid competing for food with their peers.

RelatedPosts

Scientists find evidence of complex reproduction before the Cambrian
It Is Possible Jupiter Could Support Life, Scientists Say
Earliest animal with a skeleton discovered, pre-Cambrian
Deep Sea ‘mushroom’ is a new branch of life, defying classification in the tree of life

“If they were competing for food, then we would expect to find that the organisms with stems were highly tiered,” said Kenchington. “But we found the opposite: the organisms without stems were actually more tiered than those with stems, so the stems probably served another function.”

The team believes that the stems were used to enable a greater dispersion of offspring — which rangeomorphs produced by expelling ‘propagules‘. The tallest organisms were surrounded by the largest clusters of offspring, the team found, suggesting that height helped individuals colonize a greater area with their offspring.

Still, about 540 million years ago, rangeomorphs and other Ediacaran organisms disappeared from the fossil record. It’s the Cambrian period now, and evolution is having a blast designing new and surreal creatures — including predators. Rangeomorphs, without the ability to move around, couldn’t do much to protect themselves against these predators.

The paper “The utility of height for the Ediacaran organisms of Mistaken Point” has been published in the journal Nature Ecology & Evolution.

Tags: EdiacaranMulticellularorganismsRangeomorphs

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Biology

Newly-discovered fossil worm shows early animals were more complex than we thought

byAlexandru Micu
6 years ago
Alien life

It Is Possible Jupiter Could Support Life, Scientists Say

byJohn Tuttle
7 years ago
Young Stephen Hawking. Source: The New Yorker.
Alien life

Why Stephen Hawking Was Afraid of Aliens

byJohn Tuttle
7 years ago
Rangeomorphs.
Animals

The earliest large organisms on Earth were shapeshifters

byAlexandru Micu
8 years ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.