ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Chemistry

The sweet chemistry of saltwater taffy: air bubbles work all the magic

Researchers have an idea how to make taffy taste better.

Mihai AndreibyMihai Andrei
September 15, 2023
in Chemistry, News
A A
Edited and reviewed by Zoe Gordon
Share on FacebookShare on TwitterSubmit to Reddit

When researchers from the Okinawa Institute of Science and Technology and MIT got a bunch of taffy, they weren’t interested in the taste. They wanted to analyze the sweet and see just what gives the material its unique physical properties. As it turns out, the air bubbles and oil droplets are the primary factors determining the physical properties of taffy.

sweetwater taffy chemistry
The image shows taffies of different flavors. It also shows a 3D model reconstructed by X-ray computed tomography, illustrating immiscible inclusions (oil droplets and air bubbles) in the grape-flavored taffy. Those droplets and bubbles give rise to the elasticity of taffy. Image credits: Chan et al.

Taffy rheology

Saltwater taffy is a type of candy that has been a popular treat for over a century, especially in coastal areas of the United States. Despite its name, it doesn’t actually contain sea salt water. The “saltwater” in its name is more about marketing and the seaside resorts where it became famous, rather than its ingredients.

Taffy is typically made of table sugar, water, oil, and corn syrup. Butter and starch are also often added, as are flavorings and food coloring. To make taffy, you first need to boil the ingredients together until around 270°F (132°C). Then, the mixture is poured onto a cooling table and pulled. Traditionally, it’s pulled by hand, although taffy-making machines also exist.

This pulling process is what makes taffy ‘taffy’. It aerates the candy, giving it the distinctive texture and chewiness. Researchers would call this “rheology”.

“Taffy is a viscoelastic material — it has properties between a viscous liquid and an elastic solid,” said author San To Chan. “Comparing the deformation behavior of commercial taffy to those of different lab-made sugar syrups and lab-made taffies allowed us to identify the most important taffy ingredient (and material structure) that governs taffy rheology.”

Taffy mixture. Image via Creative Commons.

Rheology is a branch of science that studies the flow of matter, primarily in liquid states, but also as soft solids or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applied force. A part of what makes rheology so interesting is that it explores how common substances like creams, shampoos, molten plastics, and even lava flow and deform.

So Chan and colleagues analyzed different components of taffy and how they influence the overall structure and flow. They found that the air bubbles and oil droplets are the primary factors determining the rheological properties of taffy.

“Taffy is composed of oil droplets and air bubbles of various sizes dispersed in a viscoelastic matrix (sugar syrup),” Chan said. “In some sense, oil droplets and air bubbles are like rubber balls. When deformed in the taffy, they tend to return to their original, spherical shape because of surface tension. In other words, emulsification and aeration make taffy more elastic, hence, chewier.”

RelatedPosts

Scientists Discover RNA, Not DNA, Is Behind the Pain and Redness of Sunburn
Massive Black Hole Could Challenge Stellar Evolution Theories
High blood pressure medication is safe for COVID-19 patients
Just 1% of Brazilian day traders earn more than the minimum wage

Designing better sweets

From there on, researchers looked at how they could improve the properties of sweets. They found that emulsifiers, substances that help other substances mix better, can promote the formation of such small droplets, leading to a chewier, longer-lasting product.

Lecithin, in particular, was found to improve the desirable properties of taffy, and according to the researchers, this can also be used to tweak the taste of the taffy.

“Because of the larger amount of soy lecithin compared to commercial taffy, the lab-made taffy has a strong soy milk-like flavor, which I like,” said Chan.

The study comes as a reminder of the surprising amount of science inside a seemingly simple sweet.

The temperature to which the sugar mixture is heated, and the act of pulling the taffy, normally determines its final texture. Heating sugar creates different candy stages (like soft ball, hard ball, soft crack, hard crack) which result in different textures when cooled. The pulling process aerates the candy, which changes its texture from a hard, sugary lump to the soft and chewy delight we know and love. The chemistry of the mixture can also be tweaked to produce slightly different physical structures.

So, the next time you enjoy a piece of saltwater taffy, you’ll not only be savoring a sweet treat but also appreciating a bit of candy-making science.

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Future

AI ‘Reanimated’ a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

byNir Eisikovitsand1 others
1 hour ago
News

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

byMihai Andrei
18 hours ago
Future

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

byTibi Puiu
19 hours ago
Diseases

This new blood test could find cancerous tumors three years before any symptoms

byMihai Andrei
20 hours ago

Recent news

AI ‘Reanimated’ a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

June 17, 2025

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

June 17, 2025

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

June 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.