Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science

Astronomers may have detected a planet orbiting a triple star system

Space is full of weird things -- and they often come in groups.

Paula Ferreira by Paula Ferreira
November 24, 2021
in Astronomy, Science

The GW Orionis star system has three stars orbiting each other. Now, researchers think they may have found a planet in this dancing star trio — and if it’s true, it could teach us a few things about how planets are formed.

GW Orionis, a triple star system with a peculiar inner region. Unlike the flat planet-forming discs we see around many stars, GW Orionis features a warped disc, deformed by the movements of the three stars at its centre. This composite image shows both the ALMA and SPHERE observations of the disc. Image Credits: ALMA (ESO/NAOJ/NRAO), ESO/Exeter/Kraus et al.

Binary star systems are well known to both scientists and science fiction fans. Although our own solar system has one star, systems with two or even three stars are not unusual. Between 40 and 50% are binaries and 20% are triple stars systems. If you’re an astronomer studying these solar systems, describing them is more complicated than those with a single star.

For binary systems, researchers use the so-called two-body problem to describe how the stars will move and gravitate around each other. However, the three-body problem is far more difficult.

The notoriously difficult three-body system has no exact solution. When the three objects have similar mass, they function in a seemingly chaotic, dynamical system whose motion is very complex and difficult to describe. Astronomers use intense computational simulators to estimate the orbits and motions in such complex systems especially when they are far away and difficult to describe.

Movement of three equal mass bodies initially at rest, showing the unmoving centre of mass

The GW Orionis system may possibly be the first triple star system we’ve ever observed that has a planet orbiting it. Two of the stars are a spectroscopic binary system, as revealed by the Doppler effect of their motion: one star is farther away from us and it appears redder, while the other is closer and appears bluer. The binary pair is separated by the same distance as that between Earth and the Sun. The third star is 8 times that distance from the binary. This type of distribution is called a hierarchical trinary, where two stars orbit each other and a third one orbits them both.

The instruments from Atacama Large Millimeter Array(ALMA), in Chile, detected a cloud of dust and gas surrounding the system. In another Chile-based observatory, the Paranal Observatory, instruments observed the deformity in that cloud. It is not a horizontal disk orbiting a star, but a bunch of messy ‘rings’ wrapped around the inner structure.

ALMA, in which ESO is a partner, and the SPHERE instrument on ESO’s Very Large Telescope have imaged GW Orionis, a triple star system with a peculiar inner region. The new observations revealed that this object has a warped planet-forming disc with a misaligned ring. In particular, the SPHERE image (right panel) allowed astronomers to see, for the first time, the shadow that this ring casts on the rest of the disc. This helped them figure out the 3D shape of the ring and the overall disc. The left panel shows an artistic impression of the inner region of the disc, including the ring, which is based on the 3D shape reconstructed by the team. Credit:ESO/L. Calçada, Exeter/Kraus et al.

The disk has three main rings, one closer to the triplet and two others misaligned from the inner one. The tilt is caused due to the orbits of the stars, the third outer star is not in the plane as the binary, so the motion of the gas around them is distorted and tilted as well.

But the distorted gas would not be like this only due to the gravitational interaction between the stars. So the team simulated a scenario in which a planet would be between a big gap between the inner rings, in an orbit that is the same plane as the binaries. Their results showed that the planet needs to be massive for that, something like Jupiter which could gain mass from the cloud, in crazy cataclysmic sets of events the planet moves to an inner orbital position. It is also possible that another planet forms from the inner ring which has 30 times the mass of our planet.

All this is a combination between observations and the simulation, whether this is the best explanation to what we have measured or not is left for future detections. The system is enormously complex and difficult to describe mathematically, even with simulations it is hard to represent it perfectly. For now, this is already amazing progress astronomers are making towards understanding this complex, far-away system.

The study was published in MNRAS.

Was this helpful?
Thanks for your feedback!
Related posts:
  1. Most earth-like planet detected orbiting sun-like star: extraterrestrial life likely
  2. Gas giants orbiting young star may require astronomers to rethink planetary formation
  3. Researchers find ‘Forbidden Planet’ orbiting closer to its parent star than we thought it could
  4. Scientists find a potentially habitable planet orbiting a dying star
  5. Astronomers find star orbiting a black hole in the center of our galaxy
Tags: triple star system

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW