homehome Home chatchat Notifications


Scientists grow graphene on silver

The wonder material Graphene, the new wonder material that promises to open a new age in technology, just got a whole lot better. Researchers have reported improved interfacing of graphene with other 2-D materials – basically ‘growing’ graphene on silver. This resulted in an exceptionally pristine sample, presenting opportunities for ultrafast electronics and advanced optics/ […]

Mihai Andrei
November 28, 2013 @ 10:26 am

share Share

The wonder material

Graphene - a one atom thick layer of carbon. photo credit: CORE-Materials

Graphene – a one atom thick layer of carbon. photo credit: CORE-Materials

Graphene, the new wonder material that promises to open a new age in technology, just got a whole lot better. Researchers have reported improved interfacing of graphene with other 2-D materials – basically ‘growing’ graphene on silver. This resulted in an exceptionally pristine sample, presenting opportunities for ultrafast electronics and advanced optics/

“Silver is a widely used material to enhance optical properties,” said Northwestern’s Mark Hersam, a co-author of the paper. “More recently, graphene has emerged as a promising platform for optical technologies. With our recent development of a method for growing graphene on silver, we can now exploit the best attributes of both graphene and silver at the same time.”

Graphene, in case you didn’t know, is simply a one atom thick layer of carbon, featuring numerous remarkable properties which can be used in electronics and not only. Despite being incredibly light, in a way it’s the world’s most powerful material; it’s already making a mark with some practical applications (graphene earbuds, graphene radio, explosive detector, etc), and in the not-so-distant future, it will probably revolutionize transistors and even computer chips. But even so, we have just barely scratched the surface of what this material is capable of doing.

Growing graphene on silver

Typically, graphene is grown on a metal surface by catalytically decomposing hydrocarbons at elevated temperatures – but this method is not really suitable for silver, because silver substrates have a relatively low melting point and are chemically inert.

Using a graphite carbon source, the Northwestern and Argonne researchers were able to grow graphene by depositing atomic carbon, rather than a carbon-based molecular precursor, onto the silver substrate. This growth meant that chemical reactivity was no longer required, and the graphene was developed at lower temperatures.

“Graphene growth and transfer to a variety of substrates has allowed graphene to transform countless scientific fields,” said Brian Kiraly, a Northwestern graduate student in materials science and engineering who worked on the research with Hersam and Nathan Guisinger, a staff scientist at Argonne.

“However, conventional techniques lead to contamination issues and are not compatible with the ultra-clean vacuum environments required for the growth of the latest 2-D materials,” he said. “By growing graphene directly on silver under vacuum, we provide an atomically pristine surface for advanced graphene-based technologies.”

They were also surprised to report another discovery – the graphene they grew was electronically decoupled from the underlying silver substrate, something which was never before reported on any other metal, making this graphene-silver coupling even more promising.

Journal Reference:

Brian Kiraly, Erin V. Iski, Andrew J. Mannix, Brandon L. Fisher, Mark C. Hersam & Nathan P. Guisinger. Solid-source growth and atomic-scale characterization of graphene on Ag(111). Nature Communications 4, Article number: 2804 doi:10.1038/ncomms3804

share Share

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.

This Teen Scientist Turned a $0.50 Bar of Soap Into a Cancer-Fighting Breakthrough and Became ‘America’s Top Young Scientist’

Heman's inspiration for his invention came from his childhood in Ethiopia, where he witnessed the dangers of prolonged sun exposure.