homehome Home chatchat Notifications


Graphene is still the world's most powerful material - even when it's flawed

In terms of materials, graphene is definitely the hot cherry at the moment; it is basically a one-atom thick layer of the mineral graphite (carbon), with more such layers stacked together forming crystalline graphene. It is very light, with a 1-square-meter sheet weighing only 0.77 milligrams, but also very durable and has a number of […]

Mihai Andrei
June 3, 2013 @ 4:42 am

share Share

In terms of materials, graphene is definitely the hot cherry at the moment; it is basically a one-atom thick layer of the mineral graphite (carbon), with more such layers stacked together forming crystalline graphene. It is very light, with a 1-square-meter sheet weighing only 0.77 milligrams, but also very durable and has a number of other fantastic properties which make it ideal for application in a number of fields, including integrated circuits, solar panels, transistors, ultracapacitors, electronics, etc (see first graphene earbuds).

graphene2

But even when imperfect, when constructed from numerous small crystalline grains, rather than being created directly in its perfect crystalline form, graphene still maintains its incredible strength. This conclusion contradicts previous simulations, which believed that its strength comes strictly from its perfect lattice.

It’s been said that graphene is so strong, that “it would take an elephant, balanced on a pencil, to break through a sheet of graphene the thickness of Saran Wrap.” The thing is, flawless graphene is very rare and it was believed that existing defects in its structure would severely impair its properties. But this latest study, conducted by researchers from Columbia University has shown otherwise.

“We substituted a different etchant and were able to create test samples without harming the graphene,” states the paper’s lead author, Gwan-Hyoung Lee, a postdoctoral fellow in the Hone lab. “Our findings clearly correct the mistaken consensus that grain boundaries of graphene are weak. This is great news because graphene offers such a plethora of opportunities both for fundamental scientific research and industrial applications.”

The primary way through which graphene is currently developed is called chemical vapor deposition (CVD) – a chemical process used to produce high-purity, high-performance solid materials. The process is often used in the semiconductor industry to produce thin films. Using this method, you can create sheets of about 1 square meter, and it is much cheaper than the alternatives.

graphene

“But CVD graphene is ‘stitched’ together from many small crystalline grains — like a quilt — at grain boundaries that contain defects in the atomic structure,” Kysar explains. “These grain boundaries can severely limit the strength of large-area graphene if they break much more easily than the perfect crystal lattice, and so there has been intense interest in understanding how strong they can be.”

So they set out to find just what is diminishing the strength of the material. What they found was that the cause wasn’t the process itself, but rather, a chemical used in the process.

“This is an exciting result for the future of graphene, because it provides experimental evidence that the exceptional strength it possesses at the atomic scale can persist all the way up to samples inches or more in size,” says Hone. “This strength will be invaluable as scientists continue to develop new flexible electronics and ultrastrong composite materials.”

share Share

After 100 years, physicists still don't agree what quantum physics actually means

Does God play dice with the universe? Well, depends who you ask.

Physicists Make First Qubit out of Antimatter and It Could One Day Explain Why the Universe Exists At All

Antimatter was held in a qubit state for nearly a minute.

Scientists Superheated Gold to 14 Times Its Melting Point and It Remained Solid

No laws of physics were harmed in this process.

This Startup Claims It Can Turn Mercury Into Gold Using Fusion Energy and Scientists Are Intrigued

The age-old alchemist's dream may find new life in the heart of a fusion reactor.

Our Radar Systems Have Accidentally Turned Earth into a Giant Space Beacon for the Last 75 Years and Scientists Say Aliens Could Be Listening

If aliens have a radio telescope, they already know we exist.

Mesmerizing Fluid “Fireworks” Reveal Clues for Trapping Carbon Underground

Simulations show stunning patterns that could shape future carbon capture strategies.

Scientists Create a ‘Smart Sponge’ That Knows When to Heal and When to Fight Inflammation

This hydrogel could help millions of people lead a better life.

Cycling Is Four Times More Efficient Than Walking. A Biomechanics Expert Explains Why

The answer lies in the elegant biomechanics of how our bodies interact with this wonderfully simple machine.

What Happens When You Throw a Paper Plane From Space? These Physicists Found Out

A simulated A4 paper plane takes a death dive from the ISS for science.

Scientists Found a Way to Turn Falling Rainwater Into Renewable Energy

It looks like plumbing but acts like a battery.