homehome Home chatchat Notifications


Graphene is still the world's most powerful material - even when it's flawed

In terms of materials, graphene is definitely the hot cherry at the moment; it is basically a one-atom thick layer of the mineral graphite (carbon), with more such layers stacked together forming crystalline graphene. It is very light, with a 1-square-meter sheet weighing only 0.77 milligrams, but also very durable and has a number of […]

Mihai Andrei
June 3, 2013 @ 4:42 am

share Share

In terms of materials, graphene is definitely the hot cherry at the moment; it is basically a one-atom thick layer of the mineral graphite (carbon), with more such layers stacked together forming crystalline graphene. It is very light, with a 1-square-meter sheet weighing only 0.77 milligrams, but also very durable and has a number of other fantastic properties which make it ideal for application in a number of fields, including integrated circuits, solar panels, transistors, ultracapacitors, electronics, etc (see first graphene earbuds).

graphene2

But even when imperfect, when constructed from numerous small crystalline grains, rather than being created directly in its perfect crystalline form, graphene still maintains its incredible strength. This conclusion contradicts previous simulations, which believed that its strength comes strictly from its perfect lattice.

It’s been said that graphene is so strong, that “it would take an elephant, balanced on a pencil, to break through a sheet of graphene the thickness of Saran Wrap.” The thing is, flawless graphene is very rare and it was believed that existing defects in its structure would severely impair its properties. But this latest study, conducted by researchers from Columbia University has shown otherwise.

“We substituted a different etchant and were able to create test samples without harming the graphene,” states the paper’s lead author, Gwan-Hyoung Lee, a postdoctoral fellow in the Hone lab. “Our findings clearly correct the mistaken consensus that grain boundaries of graphene are weak. This is great news because graphene offers such a plethora of opportunities both for fundamental scientific research and industrial applications.”

The primary way through which graphene is currently developed is called chemical vapor deposition (CVD) – a chemical process used to produce high-purity, high-performance solid materials. The process is often used in the semiconductor industry to produce thin films. Using this method, you can create sheets of about 1 square meter, and it is much cheaper than the alternatives.

graphene

“But CVD graphene is ‘stitched’ together from many small crystalline grains — like a quilt — at grain boundaries that contain defects in the atomic structure,” Kysar explains. “These grain boundaries can severely limit the strength of large-area graphene if they break much more easily than the perfect crystal lattice, and so there has been intense interest in understanding how strong they can be.”

So they set out to find just what is diminishing the strength of the material. What they found was that the cause wasn’t the process itself, but rather, a chemical used in the process.

“This is an exciting result for the future of graphene, because it provides experimental evidence that the exceptional strength it possesses at the atomic scale can persist all the way up to samples inches or more in size,” says Hone. “This strength will be invaluable as scientists continue to develop new flexible electronics and ultrastrong composite materials.”

share Share

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

So, Where Is The Center of the Universe?

About a century ago, scientists were struggling to reconcile what seemed a contradiction in Albert Einstein’s theory of general relativity. Published in 1915, and already widely accepted worldwide by physicists and mathematicians, the theory assumed the universe was static – unchanging, unmoving and immutable. In short, Einstein believed the size and shape of the universe […]

World’s Smallest Violin Is No Joke — It’s a Tiny Window Into the Future of Nanotechnology

The tiny etching is smaller than a speck of dust but signals big advances in materials science.

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

An Oxford-led team simulation just brought one of physics' weirdest predictions to life.

This New Lens Converts Invisible Infrared Light into Visible Color

An atomic-scale metalens converts infrared into visible light in a single leap

The Real Sound of Clapping Isn’t From Your Hands Hitting Each Other

A simple gesture hides a complex interplay of air, flesh, and fluid mechanics.

Two Lightning Bolts Collided Over a Japanese Tower and Triggered a Microburst of Nuclear-Level Radiation

An invisible, split-second blast reveals a new chapter in lightning physics.

This Wild Laser Setup Reads Tiny Letters From Over 1.3 Kilometers Away

A 1950s astronomy technique was used to read pea-sized letters over 1.3 kilometers away.

Golden Dome or Glass Ceiling? Why Physicists Say Trump's Planetary-Scale Defense System Might Never Work

Inside Trump's $175 billion plan to build a missile shield in space.

France has a new laser rifle that can melt electronics from 500 meters away

This isn’t your average battlefield weapon.