homehome Home chatchat Notifications


Researchers create first graphene ear buds - yes, they're awesome

A few months ago, we were telling you about the mind boggling properties the new material called graphene has, and how practical uses will not take long to follow. Apparently, things moved even faster than we expected them – Berkeley researchers have created the first ever graphene audio speaker: an earphone. Their quality, even in […]

Mihai Andrei
March 14, 2013 @ 1:12 pm

share Share

A few months ago, we were telling you about the mind boggling properties the new material called graphene has, and how practical uses will not take long to follow. Apparently, things moved even faster than we expected them – Berkeley researchers have created the first ever graphene audio speaker: an earphone. Their quality, even in raw state is superior both physically and electrically than a pair of commercial Sennheiser earphones.

graphene1

A loudspeaker (or earphone or headphone) works by vibrating a (usually) paper cone; these vibrations then produce pressure waves in the air around your ear, and depending on their frequencies, different sounds are produced. Human ears can pick up frequencies between 20Hz (very low pitch) and 20KHz (very high).

graphene2

The quality of a speaker is usually defined by how flat its frequency response is – in other words, if it produces the answer just as good regardless of the frequency it is working at. A poorer loudspeaker will only work fine in some frequencies.

graphene3

In Berkeley’s graphene earphone, they created a diaphragm (cone) 30nm-thick, 7mm-wide from a sheet of graphene. They then placed it between two silicon electrodes, which are coated with silicon dioxide to prevent any shorting if the diaphragm is driven too hard. If you apply power to the electrodes, an electrostatic force is created, causing the diaphragm to move, and depending on the frequency at which it is vibrating, create different sounds.

Given graphene’s fantastic properties, we should’t really be surprised that it does so good; traditional headphones must be padded, restricted – while graphene requires no damping. This is because graphene is so strong that the diaphragm can be incredibly thin, and thus very light, requiring no future intervention. Also, because it works like this, it is also very energy effective.

So to sum it up, what do we have? We have a raw, completely untuned, unoptimized graphene earphone with a superior frequency response to a magnetic coil that has been the target of decades of research and development – for real; and if this wasn’t impressive enough, here’s another thing: it’s perfectly scalable. That’s right, you can create really big loudspeakers and not lose any quality at all. I just decided what I want for Chritmas.

share Share

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

So, Where Is The Center of the Universe?

About a century ago, scientists were struggling to reconcile what seemed a contradiction in Albert Einstein’s theory of general relativity. Published in 1915, and already widely accepted worldwide by physicists and mathematicians, the theory assumed the universe was static – unchanging, unmoving and immutable. In short, Einstein believed the size and shape of the universe […]

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

An Oxford-led team simulation just brought one of physics' weirdest predictions to life.

The Real Sound of Clapping Isn’t From Your Hands Hitting Each Other

A simple gesture hides a complex interplay of air, flesh, and fluid mechanics.

Two Lightning Bolts Collided Over a Japanese Tower and Triggered a Microburst of Nuclear-Level Radiation

An invisible, split-second blast reveals a new chapter in lightning physics.

This Wild Laser Setup Reads Tiny Letters From Over 1.3 Kilometers Away

A 1950s astronomy technique was used to read pea-sized letters over 1.3 kilometers away.

Golden Dome or Glass Ceiling? Why Physicists Say Trump's Planetary-Scale Defense System Might Never Work

Inside Trump's $175 billion plan to build a missile shield in space.

France has a new laser rifle that can melt electronics from 500 meters away

This isn’t your average battlefield weapon.