homehome Home chatchat Notifications


Graphene aerogel takes lightest material crown - could be used to clean up oil spills

Aerogels are fantastic materials – typically, they are synthetic porous ultralight material derived from a gel, in which the liquid component of the gel has been replaced with a gas. They are ultra-light, and have numerous practical applications – most notable as insulators, but also in the pharmaceutical and cosmetic industry, in biology and chemistry […]

Mihai Andrei
March 26, 2013 @ 3:44 am

share Share

Aerogels are fantastic materials – typically, they are synthetic porous ultralight material derived from a gel, in which the liquid component of the gel has been replaced with a gas. They are ultra-light, and have numerous practical applications – most notable as insulators, but also in the pharmaceutical and cosmetic industry, in biology and chemistry research, and many, many more; and guess what? Graphene can help here too!

graphene aerogel

Graphene, of course, isn’t a gas – it’s a substance composed of pure carbon, with atoms arranged in a regular hexagonal pattern similar to graphite, but in a one-atom thick sheet. The first aerogels have been created in 1931 by American scientist and chemical engineer, Samuel Stephens Kistler, but since then, the crown of ‘lightest material’ has been passed down a lot. A “multiwalled carbon nanotube (MCNT) aerogel” dubbed “frozen smoke” with a density of 4 mg/cm3 lost its world’s lightest material title in 2011 to a micro-lattice material with a density of 0.9 mg/cm3. Less than a year later, aerographite claimed the crown with its density of 0.18 mg/cm3.

graphene aerogel2

Now, the new title holder is a graphene aerogel created by a research team from China’s Zhejiang University in the Department of Polymer Science and Engineering lab headed by Professor Gao Chao. The team used a relatively unusual technique to create it: a freeze-drying method that involved freeze-drying solutions of carbon nanotubes and graphene to create a carbon sponge that can be adjusted to any shape.

graphene aerogel 3

“With no need for templates, its size only depends on that of the container,” said Prof. Gao. “Bigger container can help produce the aerogel in bigger size, even to thousands of cubic centimeters or larger.”

The result is, as always with graphene, a material that is very strong and extremely elastic, bouncing back after being compressed. It can also absorb up to 900 times its own weight in oil and do so quickly. A very interesting application of this aerogel is in oil spills – a single gram of aerogel able to absorb up to 68.8 grams of organic material (such as oil) per second.

“Maybe one day when oil spill occurs, we can scatter them on the sea and absorb the oil quickly,” said Gao. “Due to its elasticity, both the oil absorbed and the aerogel can be recycled.”

The findings are further detailed in the journal Nature

share Share

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

This isn’t your average timber.

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

So, Where Is The Center of the Universe?

About a century ago, scientists were struggling to reconcile what seemed a contradiction in Albert Einstein’s theory of general relativity. Published in 1915, and already widely accepted worldwide by physicists and mathematicians, the theory assumed the universe was static – unchanging, unmoving and immutable. In short, Einstein believed the size and shape of the universe […]

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

An Oxford-led team simulation just brought one of physics' weirdest predictions to life.

These Bacteria Exhale Electricity and Could Help Fight Climate Change

Some E. coli can survive by pushing out electrons instead of using oxygen

Student Finds the Psychedelic Fungus the Inventor of LSD Spent His Life Searching For

The discovery could reshape how we study psychedelic compounds in nature and medicine.

The Real Sound of Clapping Isn’t From Your Hands Hitting Each Other

A simple gesture hides a complex interplay of air, flesh, and fluid mechanics.

Two Lightning Bolts Collided Over a Japanese Tower and Triggered a Microburst of Nuclear-Level Radiation

An invisible, split-second blast reveals a new chapter in lightning physics.

Scientists Invented a Way to Store Data in Plastic Molecules and It Could Someday Replace Hard Drives

What if your next hard drive wasn’t a box, but a string of molecules? Synthetic polymers promises to revolutionize data storage.

This Wild Laser Setup Reads Tiny Letters From Over 1.3 Kilometers Away

A 1950s astronomy technique was used to read pea-sized letters over 1.3 kilometers away.