ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Future

Scientists find unique material with its own memory, similar to human neurons

Vanadium oxide seems capable of “remembering” its history of previous external stimuli. No other material is like it.

Tibi PuiubyTibi Puiu
August 29, 2022
in Future, News
A A
Share on FacebookShare on TwitterSubmit to Reddit
Illustration of vanadium oxide remembering its previous states. Credit: POWERLab, EPFL.

Although it’s not even a biological cell, scientists have found that vanadium dioxide — a compound routinely used in electronics — can virtually “remember” previous external stimuli in a way akin to neurons in the human brain. Vanadium oxide is seen as a worthy competitor to silicon, the world’s most currently used semiconductor, due to its promising speed, energy consumption, and miniaturization. The new findings suggest the compound could also be an excellent material for chips that mimic the way the human brain processes information, for so-called “neuromorphic” computation.

Researchers at the Polytechnic University of Lausanne’s POWERlab made the discovery serendipitously while studying how long it takes vanadium dioxide to transition from one state to another, specifically from an insulator to a conductor. At temperatures below 68 degrees Celsius (154.4 degrees Fahrenheit), vanadium oxide turns into an insulator. At temperatures beyond that range, the crystal lattice of the material changes and becomes an electrical conductor.

Ph.D. student Mohammad Samizadeh Nikoo applied electric current of varying intensity to a sample of the material, taking measurements as the sample switched between states. When the current moved across the material, it heated the sample, causing vanadium oxide to change state. When the current was stopped, the material reverted to its initial state.

But when the young researcher applied a follow-up second pulse of electricity, the time it took for the material to change state was directly linked to previous measurements.

This presents a remarkable observation: vanadium oxide has a form of memory, which enables it to store information about its most recent external stimulus. This memory seems to last for up to three hours, according to experiments. To the best of the scientists’ knowledge, no other material has this property.

“We didn’t expect to see this kind of memory effect, and it has nothing to do with electronic states but rather with the physical structure of the material. It’s a novel discovery: no other material behaves in this way,” said Prof. Elison Matioli, who heads the POWERlab.

Memory is the backbone of all computational processes. Since vanadium oxide also has other appealing properties, it could become a prime candidate for replacing silicon in some computational applications, such as data storage and processing — although its high-temperature requirements for conducting electricity make it infeasible for many consumer applications.

Furthermore, the parallels to how human neurons work are quite striking. This has implications for neuromorphic computing, which implements aspects of biological neural networks as analogue or digital copies on electronic circuits. Although humans seem very slow compared to computers, that’s true only for raw computations. In fact, the brain has higher computational power efficiency than electronic computers by orders of magnitude, and vanadium oxide could help tap into this potential.

RelatedPosts

Time flies as we age because our brains get bigger and less efficient, a new paper proposes
Memories for opposing behaviors are stored in the same parts of the brain, study finds
P7C3: a chemical to make brain cells grow (possible cure for Alzheimer)
During REM sleep, memory is consolidated by weeding out unwanted neural connections

“We discovered that these activation conditions are completely related to the history and background of vanadium oxide and actually, it is related to its previous activations. This is exactly the same as what happens in our brain,” said Samizadeh Nikoo.

“When we recognise someone, a series of neurons are activating, and a memory is forming in our brain. When we meet the same person again, those neurons can be activated much faster and by using less energy.”

The findings appeared in the journal Nature Electronics.

Tags: neuronsvanadium oxide

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Mind & Brain

The Brain May Make New Neurons in Adulthood and Even Old Age

byTibi Puiu
1 month ago
Health

First Drug That Repairs Brain Damage After Stroke. It Mimics Rehabilitation

byTibi Puiu
5 months ago
Health

Scientists Turn Skin Cells Directly Into Neurons Bypassing Stem Cells

byTibi Puiu
5 months ago
A female striated frogfish.
Animals

The bizarre frogfish has “fishing motor neurons” controlling the rods on its head

byRupendra Brahambhatt
7 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.