ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

Scientists find life at 20 km deep

Dragos MitricabyDragos Mitrica
October 29, 2014
in Biology, Geology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

A Yale undergrad may force us to rewrite geology and biology books, after reporting a find which suggests that life can exist much deeper than currently believed, at temperatures at which DNA is barely stable.

Photo credit: Philippa Stoddard. A hundred million years ago this outcrop is thought to have been 20km down, yet it still contains evidence of life.

Geologists found carbon isotopes in rocks on Washington state’s South Lopez Island; these isotopes suggest the minerals grew from fluids flush with microbial methane. Microbial methane has a very distinct chemical signature and can be discerned with relative ease from non-organic methane. At the time microbes lived in this environment, the rocks were buried 20 km deep.

At the Geological Society of America’s annual meeting, Yale undergraduate student Philippa Stoddard reported on the discovery of aragonite in the San Juan Islands, Washington State. Aragonite is a carbonate mineral, one of the two common, naturally occurring, crystal forms of calcium carbonate, CaCO3 (the other form being the mineral calcite). There are pale veins of aragonite cutting through basalt rocks that sat offshore North America millions of years ago. Stoddard found an outcrop where aragonite veins have anomalously light concentrations of carbon isotopes, with up to 50 fewer heavy isotopes per million atoms. This is the key signature which suggests that the methane was released by microorganisms.

“We propose that the aragonite veins were formed by oxidation of methane. The degree of oxidation was variable, as indicated by the wide range of carbon isotope values. If correct, then the lightest carbon values would represent the isotopic composition of the methane. At low surface pressures, bacterial life is know to remain active to temperatures of ~122 C. Biomolecules are stabilized by pressure, so bacterial life should extend to higher temperatures within the Earth’s interior. We suggest that the Lopez Island aragonite veins are evidence of this deep life”, the study writes.

The fact that microorganisms could survive at those depths is truly remarkable. If we consider that the average geothermal gradient is about 25 degrees Celsius per 1 km (1 °F per 70 feet of depth), then at 20 km you get almost 500 degrees! Arguably, you could say that the geothermal gradient was a bit more mellow in that area (though that’s still not clear yet), but we’re still dealing in the hundreds of degrees Celsius here – at those temperatures, DNA itself is barely stable.

Stoddard and her collaborators plan to sample more aragonite samples from the area to see if this was an anomalous concentration (or perhaps a measuring error), or if the same thing can be found throughout more outcrops. Geologists also have to better understand the thermal environment which may have allowed microbes to survive at that depth.

“We reason that you could have life deeper in subduction zones, because you have a lot of water embedded in those rocks, and the rocks stay cold longer as the [plate] comes down,” Stoddard said.

That’s definitely a possibility, but still not a proven fact.

RelatedPosts

Importing soybeans has a hidden cost
[WATCH] Some ignorant human trying to stop a door-opening robot dog
One of Einstein’s manuscripts is going to auction and is expected to fetch millions of euros
The ground coffee you buy at the shops could soon get much better

ShareTweetShare
Dragos Mitrica

Dragos Mitrica

Dragos has been working in geology for six years, and loving every minute of it. Now, his more recent focus is on paleoclimate and climatic evolution, though in his spare time, he also dedicates a lot of time to chaos theory and complex systems.

Related Posts

Physics

The Moon Used to Be Much Closer to Earth. It’s Drifting 1.5 Inches Farther From Earth Every Year and It’s Slowly Making Our Days Longer

byStephen DiKerby
36 minutes ago
Astronomy

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

byTudor Tarita
1 hour ago
News

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

byTudor Tarita
4 hours ago
A photo showing multiple brain scans.
Health

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

byRupendra Brahambhatt
4 hours ago

Recent news

The Moon Used to Be Much Closer to Earth. It’s Drifting 1.5 Inches Farther From Earth Every Year and It’s Slowly Making Our Days Longer

September 15, 2025

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

September 15, 2025

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

September 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.