homehome Home chatchat Notifications


Inteligent shock absorbers dampen vibrations and generate power

Many efforts and funding have been put into countering vibrations, such as the ones produced by an internal combustion engine, to dampen shocks and reduce noise. Much progress has been made; you only need to compare two vehicles, one twenty years old, the other brand new, and you’ll instantly notice the differences. One, noisy and […]

Tibi Puiu
June 4, 2012 @ 1:45 pm

share Share

Many efforts and funding have been put into countering vibrations, such as the ones produced by an internal combustion engine, to dampen shocks and reduce noise. Much progress has been made; you only need to compare two vehicles, one twenty years old, the other brand new, and you’ll instantly notice the differences. One, noisy and bumpy, the other silent and smooth to cruise.

There is still room for much improvement. Engineers at the Fraunhofer Institute for Structural Durability and System Reliability LBF in Darmstadt are now researching the next generation of damping elements – active elastomers.

Elastomers are highly elastic materials, most common of which being rubber, which are well suited for absorbing shock and are widely used in the field. The researchers intend on brining shock absorbing a step further, or better yet a step back – making elastomers actively react to vibrations before they get the chance to produce shock.

The lattice-shaped electrode in the foreground, and the elastomer in the background.

The lattice-shaped electrode in the foreground, and the elastomer in the background.

Imagine a top tennis player slowing the ball down on a single drop by pulling back the racket. The active elastomer envisioned by the scientists would relatively employ the same principle, drawing out the energy from vibrations through a precise push-pull mode. In theory, vibrations would dissipate completely, in practice they’d be rendered to a minimum. Worst case scenario, active elastomers are a lot more efficient than any other conventional elastomer currently used today.

The concept isn’t new, however. Materials that are similar in principle have already been developed. “They are called ‘electroactive elastomers’,” explains LBF scientist William Kaal. “They are elastic substances that change their form when exposed to an electrical field.

An applied alternative current makes the material vibrate, and if you have smart electronics applying current precisely when and where it is necessary on the material to make it vibrate in a push-pull manner, then unwanted vibrations would be easily dissipated in the most part.

To demonstrate their concept, the researchers developed a model  made out of 40 thin elastomer electrode layers, fitted with  microscopic-sized holes in the electrodes. “If an electric voltage deforms the elastomer, then the elastomer can disperse into these holes,” said Jan Hansmann. The result is an actuator that can rise or fall a few tenths of a centimeter upon command – several times a second

The device then had a small mechanical oscillator attached to it to impose vibrations. When the oscillator was turned on, the actuator soon followed its oscillations and perfectly resonated with its frequency. If the oscillator is tapped by hand, it quickly settles down when the actuator vibrates in push-pull mode.

“An engine’s vibrations can be really disruptive,” says William Kaal. “The vibrations are channeled through the chassis into the car’s interior, where the passengers start to feel them. Active elastomers may help further reduce vibrations in the car,” Kaal asserts.

When the stack actuator is reversed, from producing vibrations, to absorbing them from the environment, it produces energy. The scientists introduced an electromagnetic oscillator on their stack actuator, it converted the vibrations into power. On the same subject, read: Nanotech powered by your breath.

 “That would be of interest, for example, if you wanted to monitor inaccessible sites where there are vibrations but no power connections,” Jan Hansmann believes – as he cites an example: the temperature and vibration sensors that monitor bridges for their condition.

source: physorg

share Share

New Type of EV Battery Could Recharge Cars in 15 Minutes

A breakthrough in battery chemistry could finally end electric vehicle range anxiety

We can still easily get AI to say all sorts of dangerous things

Jailbreaking an AI is still an easy task.

Scientists Solved a Key Mystery Regarding the Evolution of Life on Earth

A new study brings scientists closer to uncovering how life began on Earth.

AI has a hidden water cost − here’s how to calculate yours

Artificial intelligence systems are thirsty, consuming as much as 500 milliliters of water – a single-serving water bottle – for each short conversation a user has with the GPT-3 version of OpenAI’s ChatGPT system. They use roughly the same amount of water to draft a 100-word email message. That figure includes the water used to […]

Smart Locks Have Become the Modern Frontier of Home Security

What happens when humanity’s oldest symbol of security—the lock—meets the Internet of Things?

A Global Study Shows Women Are Just as Aggressive as Men with Siblings

Girls are just as aggressive as boys — when it comes to their brothers and sisters.

Birds Are Singing Nearly An Hour Longer Every Day Because Of City Lights

Light pollution is making birds sing nearly an hour longer each day

U.S. Mine Waste Contains Enough Critical Minerals and Rare Earths to Easily End Imports. But Tapping into These Resources Is Anything but Easy

The rocks we discard hold the clean energy minerals we need most.

Does a short nap actually boost your brain? Here's what the science says

We’ve all faced the feeling at some point. When the afternoon slump hits, your focus drifts and your eyelids start to drop; it’s tiring just to stay awake and you can’t fully refocus no matter how hard you try. Most of us simply power through, either with coffee or sheer will. But increasingly, research suggests […]

Scientists Master the Process For Better Chocolate and It’s Not in the Beans

Researchers finally control the fermentation process that can make or break chocolate.