homehome Home chatchat Notifications


Nanotech powered by your breath

At the nano scale, even the slightest of motions can be harnessed and transformed into useful work. Material science researchers  at the University of Wisconsin, for instance, have developed a very thin plastic belt capable of vibrating from low velocity fluid flow, such as one’s breath. Made out of  polyvinylidene fluoride (PVDF), the microbelt not only […]

Tibi Puiu
October 20, 2011 @ 1:44 pm

share Share

Graduate Student Jian Shi and Materials Science and Engineering Assistant Professor Xudong Wang demonstrate a material that could be used to capture energy from respiration. (c) University of Wisconsin

Graduate Student Jian Shi and Materials Science and Engineering Assistant Professor Xudong Wang demonstrate a material that could be used to capture energy from respiration. (c) University of Wisconsin

At the nano scale, even the slightest of motions can be harnessed and transformed into useful work. Material science researchers  at the University of Wisconsin, for instance, have developed a very thin plastic belt capable of vibrating from low velocity fluid flow, such as one’s breath.

Made out of  polyvinylidene fluoride (PVDF), the microbelt not only vibrates but also entraps electrical charge in response to the mechanical stresses it undergoes – a simple application of the piezoelectric effect. Thus, it can generate much needed electrical energy just enough to power tiny devices.

Since the device only needs discrete motion to power it, one’s breath or blood flow would be more than enough; add the fact that PVDF is bio compatible and you’ve got yourself an ideal piece of biotech. Using a more improved variant of this technology, current biodevices such as pacemakers would no longer require replacement or new medical tiny devices could be powered by the self-regenerating energy.  In time, and with some improvements made to the process, the researchers believe that the PVDF can actually be thinned to a sub-micron measurement .

During testing, the device reached typical power levels in the order of millivolts, while reaching up to 6 volt during maximum airflow speeds. The vibrating microbelt was developed by Assistant Professor Xudong Wang, postdoctoral Researcher Chengliang Sun and graduate student Jian Shi.

“Basically, we are harvesting mechanical energy from biological systems,” Wang said. “The airflow of normal human respiration is typically below about two meters per second. We calculated that if we could make this material thin enough, small vibrations could produce a microwatt of electrical energy that could be useful for sensors or other devices implanted in the face.”

source

share Share

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

In the UK, robotic surgery will become the default for small surgeries

In a decade, the country expects 90% of all keyhole surgeries to include robots.

Bioengineered tooth "grows" in the gum and fuses with existing nerves to mimic the real thing

Implants have come a long way. But we can do even better.

Science Just Debunked the 'Guns Don’t Kill People' Argument Again. This Time, It's Kids

Guns are the leading cause of death of kids and teens.

Big Tech Said It Was Impossible to Create an AI Based on Ethically Sourced Data. These Researchers Proved Them Wrong

A massive AI breakthrough built entirely on public domain and open-licensed data

A Chemical Found in Acne Medication Might Help Humans Regrow Limbs Like Salamanders

The amphibian blueprint for regeneration may already be written in our own DNA.

World’s Smallest Violin Is No Joke — It’s a Tiny Window Into the Future of Nanotechnology

The tiny etching is smaller than a speck of dust but signals big advances in materials science.

Drinking Sugar May Be Far Worse for You Than Eating It, Scientists Say

Liquid sugars like soda and juice sharply raise diabetes risk — solid sugars don't.